
Journal of Software Engineering Practice, 2025 6(1)

1

Development and Evaluation of a Deep Learning-Based Model

for Source Code Quality Classification Using Industrial Data

Shuichi Tokumoto1, Ryotaro Imai1, and Shinji Kusumoto2

1 Information Technology R&D Center, Mitsubishi Electric Corporation, Japan

2 Graduate School of Information Science and Technology, The University of Osaka,

Japan

Abstract

In recent years, there has been growing interest in automatic source code classification

technologies to improve software productivity. However, many organizations face

difficulties adopting machine learning solutions due to security constraints that restrict

the use of online tools. This study aims to develop and validate a deep learning-based

model capable of operating entirely within a secure corporate environment to classify the

quality of source code. The model, referred to as the Source Code Quality Classification

Model (SCQC model), was trained and evaluated using both open-source software (OSS)

and internal source code. First, a training dataset was constructed from OSS repositories,

and the resulting model achieved an accuracy of up to 82.1%. To examine its

generalizability, the model was applied to internal source code. The accuracy declined

significantly due to differences in code structure and development practices, highlighting

the critical importance of domain alignment. Further experiments with internal data

demonstrated that restricting the target scope by programming language and product

category could improve prediction accuracy. These findings suggest that it is feasible to

build practical classification models when training data is tailored to the specific

characteristics of the development environment. The results indicate a promising

direction for implementing such models in real-world settings. However, challenges

remain, including the preparation of high-quality labeled training data and adapting

models to specific domains. Future work will focus on addressing these issues and

exploring integration of the SCQC model into actual code review and quality assurance

workflows.

Keywords: Source Code Quality, Deep Learning, Code Quality Classification, Domain

Adaptation, Industrial Software Development

1. Introduction

In recent years, the reuse-based development, where features are continuously

extended based on existing software, has become mainstream in software development.

This approach is commonly adopted in large and complex software systems to improve

Journal of Software Engineering Practice, 2025 6(1)

2

development efficiency and reduce effort [1]. However, in reuse-based development, a

lack of understanding of existing features and architecture, misjudgment of the scope of

impact, and inadequate testing can lead to unintended defects or performance

degradation, resulting in a decline in software quality. Prior research has reported

correlations between structural complexity, change history metrics, and defects [2]. To

prevent such quality degradation, it is essential to verify the reused software in advance

and conduct impact analysis to assess how modifications affect existing functionality.

As software functionality continues to grow and become more complex, source

code tends to expand. With repeated reuse, its readability often declines, leading to the

breakdown of the modular structure. This structural degradation leads to decreased

maintainability and complicates modification and maintenance tasks [3]. In many

organizations, coding is outsourced to external contractors, and the design staff who place

orders may not fully understand the structure or processing details of the source code [1].

Against this backdrop, it is crucial to understand the quality of the source code being reused

early in the development process to mitigate development risks. Traditional methods for

evaluating source code quality have relied on static analysis tools and software metrics (e.g.,

McCabe's cyclomatic complexity [4], Halstead metrics). However, these methods mainly

visualize the structural characteristics and complexity of the code and do not directly

predict the presence of defects or risks. As a result, the interpretation and judgment of

evaluation results heavily depend on the experience and skills of developers and quality

assurance personnel.

Recently, machine learning techniques—such as deep learning and generative

AI—have made rapid progress, expanding beyond fields like natural language processing

and image recognition to applications in software engineering as well [5][6]. This has

increased expectations for applying these technologies to automate software quality

assessment. However, many deep learning models rely on online knowledge bases, which

poses security risks in corporate environments where source code and other confidential

data cannot be sent externally. As a result, there is a growing need for training and

operating models entirely within local environments, especially in companies handling

sensitive software.

This study focuses on the applicability of machine learning models in actual

software development environments within companies. The goal is to construct a

lightweight defect classification model that can operate in limited environments and with

minimal information. Using general open-source software (OSS) tools, we constructed a

learning model that operates in local environments and designed and evaluated a practical

source code quality assessment method. Specifically, we used past source code

modification histories as training data and created a model to predict defects at the

function level. The model learning and prediction processes were performed on a PC

using methods and machine learning frameworks provided by OSS. To validate the

Journal of Software Engineering Practice, 2025 6(1)

3

effectiveness of this approach, we conducted evaluation experiments using the

company’s own source code and discussed its accuracy, reproducibility, and applicability

in business scenarios. In section 2, we review related research on software quality

prediction, while section 3 discusses the challenges to be addressed in this study. Section

4 explains the proposed quality assessment model, and section 5 presents the validation

results using OSS and internal source code. In section 6, we discuss these results, and in

section 7, we conclude this study.

2. Related Work

Software quality prediction has been a key technology in quality assurance for

software development. One of the most common methods for this is the use of software

metrics. A representative study in this area is McCabe's cyclomatic complexity [4].

Software metrics quantify the structural features of source code, and developers use these

values to predict the quality of the software. Similarly, many studies have been conducted

using statistical methods. For instance, Nagappan et al. statistically analyzed the

relationship between software metrics and defects and developed a defect prediction

model [7].

With the development of data utilization in statistical methods, machine learning

has gained attention for software quality prediction. In these approaches, predictive

models have been developed to identify the presence of defects using features derived

from source code and development process data. Khoshgoftaar et al. proposed a defect

prediction model using neural networks, demonstrating higher prediction accuracy

compared to traditional statistical methods [8]. Xing et al. performed quality prediction

based on software metrics using Support Vector Machines (SVM) [9].

With the advancement of deep learning, its application to software defect

prediction has also progressed. Deep learning has the advantage of being able to extract

and learn more complex features compared to traditional machine learning. One key

advantage is that it can automatically extract and learn structural and semantic features

from source code. Pham et al. proposed a deep learning model based on LSTM by

converting source code into Abstract Syntax Trees (ASTs) [10]. This approach enables

defect prediction while preserving the syntactic structure of the source code. More

recently, defect prediction methods using Transformer-based models have been studied,

improving prediction accuracy by applying natural language processing techniques to

source code analysis [11].

However, several challenges have been identified with the use of software metrics

and statistical methods. In software metrics-based approaches, the evaluation is limited to

the perspective of pre-defined software metrics, making it difficult to capture other

features. Additionally, since the evaluation is performed from the perspective of the

Journal of Software Engineering Practice, 2025 6(1)

4

evaluator, prediction accuracy tends to vary depending on the target project or domain.

Statistical methods are also heavily dependent on how data is collected, its quantity, and

its distribution, making general application difficult [7][9]. Furthermore, in machine

learning-based quality prediction research using OSS, high accuracy is not always

achieved. For example, while Pham et al.'s deep learning model showed some

improvement in accuracy, it was not demonstrated whether that accuracy is useful in

actual development environments.

Most existing methods have been validated mainly for research or OSS, with few

applications in real corporate settings. Their effectiveness is often limited by the

characteristics of the target software. In practice, technical and organizational barriers

remain, such as data preparation, model accuracy, operational constraints, and cost.

This study addresses these issues by building and evaluating a deep learning

model aimed at practical use within companies. Specific constraints and challenges are

discussed in the next section.

3. Challenges in This Study

This study aims to construct a system for source code quality assessment

(predicting the presence or absence of defects) using deep learning in a corporate

software development environment. However, in order to implement and operate a

practical deep learning model within a company, several technical and operational

challenges must be addressed beforehand. This section outlines the constraints underlying

this study and the major challenges that need to be resolved.

Operation in a Local Environment: Many software systems developed within

companies contain sensitive information, such as proprietary data or customer details. As

a result, using external cloud services or APIs for training and inference is difficult due to

the risk of information leakage. Therefore, it is essential to construct and operate a model

that can complete the entire process of training and inference within the company’s

closed network environment. This requires the ability to build models using OSS

frameworks for training, assuming that the process is self-contained.

Acquisition of Training Data: To construct a quality assessment model using

deep learning, a large training dataset is necessary. For learning to determine the presence

or absence of defects, labeled source code indicating good or bad quality is required.

However, it is rare for source code within a company to have pre-existing defect labels.

As a result, it is essential to have defect-related information that can be labeled, along

with the corresponding source code management. This implies that effective defect

management and version control systems are essential for generating training datasets.

Journal of Software Engineering Practice, 2025 6(1)

5

Accuracy of Quality Assessment: Based on internal interviews, it was found that

software development requires a prediction accuracy of 80% or higher. This requirement

is based on the cost and risks of corrective actions that would be taken based on the

prediction results. If the prediction accuracy is low, incorrect modifications or rework

may occur, potentially leading to reduced work efficiency.

4. Evaluation Method

4.1. Basic Method

This study proposes a deep learning-based method for assessing source code

quality, aiming to reduce subjectivity and reliance on developer experience. The method

builds a classification model—a model that predicts whether a given unit of source code

contains a defect (1) or not (0). The model is trained using small code units labeled with

defect information, based on actual source code and related defect records. In this study,

a function or method is used as the unit of classification.

For vectorizing the source code, the open-source Word2Vec [12][13] is used, and

for constructing the classification model, TensorFlow [14][15] is employed. Word2Vec is

a distributed representation learning technique in natural language processing that uses

neural networks to learn the semantic similarity of words (in this case, source code

tokens) as numerical vectors. TensorFlow is an open-source machine learning library

developed by Google. It is easy to operate in a local environment and has the advantage

of being suitable for adoption in corporate environments, thanks to extensive

documentation and community support. Since uploading company source code to the

cloud for training poses security risks, such as information leakage, TensorFlow, which

can be fully utilized in a local environment, is adopted in this study to suit internal use.

Figure 1 shows the learning flow of the proposed source code quality prediction

method in this study. The method consists of the following three processes:

Source Code Acquisition Process: The source code used for training is obtained

from version control systems such as Git. By analyzing the modification history, the

differences before and after each commit are examined to identify functions where

defects were fixed. The version of the code before the fix is labeled as "defect present

(1)," and the version after the fix as "defect absent (0)." This labeling process is

performed automatically using a tool.

Training Data Creation Process: For the labeled functions, preprocessing steps

such as removing blank lines and comments and tokenizing the code are applied. Then,

distributed representations are generated using Word2Vec, resulting in each function

being represented as a fixed-length vector suitable for input to the classification model.

Journal of Software Engineering Practice, 2025 6(1)

6

Figure 1: Learning Flow of the Source Code Quality Prediction Method

Classification Model Training Process: Using the vectorized functions and their

corresponding labels obtained in the previous step, a binary classification model is built

with TensorFlow. This model learns to predict the presence or absence of defects based

on the structural features of the functions, serving as a classifier that evaluates the quality

of new functions.

The trained classification model outputs the likelihood of defect presence (1/0)

when given new source code (functions) as input. By providing a clear binary output, this

method eliminates subjective evaluation by developers and offers intuitive, easily

understandable metrics. This method is intended to serve as an auxiliary tool for code

review and specification verification by developers, with the final quality judgment being

made through human review.

4.2. Implementation and Evaluation Environment

To verify the method proposed in the previous section, the Defect Classification

System (DCS) was developed. The operating system, programming languages, and

existing tools used in the development of DCS are listed in Table 1. In DCS, Word2Vec

was first used to learn distributed representations in order to vectorize source code at the

function level. For this training, the Noise-Contrastive Estimation (NCE) loss function

was used, and optimization was performed using the GradientDescentOptimizer. The key

parameter settings for training Word2Vec are shown in Table 2. The resulting vectors

were then used to train a binary classification model (referred to as the classification

model) that predicts the presence or absence of defects. In this training process, the cross-

entropy loss function was used, and RMSPropOptimizer was adopted as the optimization

method. These configuration settings were determined at the outset of the study and were

consistently applied throughout all evaluations presented in this paper.

Journal of Software Engineering Practice, 2025 6(1)

7

Table 1: DCS Software Environment

OS Ubuntu 16.04 LTS

Programming Language Python 3.6.1

OSS Machine Learning Framework TensorFlow 1.1.0

Language Processing Tool Word2Vec 0.5.1

Table 2: Configuration and Operational Parameters of the Word2Vec

Batch Size 500

Embedding Size 300

Vocabulary Size 2,000

Window Size 3

Learning Rate 0.05

Number of Epochs 100,000

4.3. Data Collection and Composition for Training

In machine learning, improving model performance requires large volumes of

high-quality training data. In this study, we constructed labeled source code datasets that

indicate the presence or absence of defects, using not only OSS but also internally

developed code.

To facilitate labeling, a dedicated tool was developed. This tool analyzes commit

comments stored in version control systems and automatically extracts commits

containing defect-related keywords such as "bug," "Bug," "Fix," "fix," "Fixed," "fixed,"

"Patch," "patch," "defect," and "Defect." It then obtains the code differences between the

relevant revisions to identify the modified functions. The functions before the fix are

labeled as “defect present (1),” and the functions after the fix are labeled as “defect

absent (0),” which are then registered as training data on a function-by-function basis.

Through this approach, we were able to systematically collect and construct

training datasets consisting of approximately 1,000 to 10,000 function-level code

samples. The target source code used for evaluation was primarily embedded software,

and the programming languages analyzed included C, C++, and C#.

5. Experiments and Evaluation

This section verifies the effectiveness of the proposed source code quality

classification method, specifically focusing on the classification model that functions as

part of the DCS. The evaluation was conducted from the following perspectives:

Journal of Software Engineering Practice, 2025 6(1)

8

• Evaluation of the performance and practicality of the classification model

constructed using OSS data

• Evaluation of the applicability of the model to different development

environments and types of software

• Performance evaluation of the classification model when applied to software with

stable software components

5.1. Evaluation of the Classification Model Built with OSS Data

The evaluation was conducted using source code from OSS projects written in the

C language. Multiple OSS projects were selected as targets, based on the ease of

obtaining defect-related information and their active and continuously maintained

development communities (for details of the projects, refer to Appendix). From each

project, a labeled dataset was created by associating the source code with its

corresponding defect-related information. The dataset was randomly split into 90%

training data and 10% validation data, ensuring that different data were used for training

and validation to evaluate generalization performance.

To assess the effect of training data volume on model accuracy, the number of

training instances was varied incrementally (from 1,000 to 10,000). As shown in Figure

2, the accuracy improved as the data volume increased, achieving an accuracy of 80.4%

when trained with 8,000 samples. This result exceeded the operational target defined in

this study. However, after 8,000 samples, the accuracy plateaued, indicating diminishing

returns from adding more data.

Figure 2: Trends in Accuracy with Varying Training Data Volume

Journal of Software Engineering Practice, 2025 6(1)

9

The classification model built from OSS code (trained with 10,000 samples) was

applied to software developed at Factory A within the company. All of the source code

was written in the C language. When applied to 1,000 validation samples created

similarly to the OSS data, the model achieved an accuracy of 61.2%. This relatively low

accuracy suggests that the model had limited generalization capability, likely due to

structural and functional dissimilarity between the OSS and Factory A's software.

As a comparative experiment, six developers from other departments manually

classified a subset (120 samples) of Factory A’s validation data. The conditions for the

manual classification were as follows:

• Only the source code of the validation data was provided (no specification

information)

• All code samples were unfamiliar to the participants

• No time limit was imposed

• External references were prohibited

Table 3 presents the classification results by each developer, and Figure 3 compares

their average accuracy with that of the classification model. The average human accuracy

was 53.5%, which was lower than the model’s accuracy of 61.2%. This result suggests

that the classification model demonstrates a certain degree of effectiveness when no

specification information is available.

Table 3: Results of Manual Classification by Developers

Participant Accuracy
Total Response

Time

Development

Experience

Total Lines of

Code Written (Past)

A 55.8% 2h 51min 8 years 5KL

B 50.0% 2h 36min 8 years 2KL

C 48.3% 4h 14min 9 years 3KL

D 55.0% 4h 28min 10 years 5KL

E 57.5% 2h 06min 14 years 100KL

F 54.2% 1h 26min 26 years 200KL

Journal of Software Engineering Practice, 2025 6(1)

10

Figure 3: Accuracy Comparison Between Human Participants and the Classification

Model

Nevertheless, both results fell significantly short of the target operational accuracy

(≥80%) set for internal use. This highlights the limitations of applying OSS-trained

models to internal software. Based on this challenge, the following sections present the

construction and accuracy evaluation of models trained on internally developed software,

aiming for practical deployment.

5.2. Evaluation Using Product Software

5.2.1. Evaluation Based on Development Environments and Software Types

In this section, the classification method was evaluated using software developed

at Factory B within the organization. The target software was embedded software

developed under consistent processes and quality standards within the factory. Similar to

the evaluation using OSS, a classification model was built from source code in the

version control system by leveraging bug tracking IDs and commit messages. Based on

the findings from the OSS-based evaluation, it was determined that at least 8,000 training

samples are necessary to achieve an accuracy above 80%. Therefore, only results for

datasets with 8,000 samples or more are reported here. Evaluation results categorized by

development environments and software characteristics are presented in Tables 4 to 6.

Factory-Wide Classification Model: The model trained on the entire dataset

(328,070 samples) achieved an accuracy of 64.8%, which is comparable to the result

observed with Factory A's data. This indicates that building a generalized classification

model across all software in the factory may be difficult.

Journal of Software Engineering Practice, 2025 6(1)

11

Model by Programming Language: Models built separately for C, C++, and C#

all achieved accuracy in the 60% range, suggesting that, as with the factory-wide model,

classification based solely on programming language is not highly effective.

Model by Product Type1: Accuracy varied significantly across products (from

77.9% to 31.2%). For Products 1 through 3, accuracy was already near the target, and

further improvement beyond 80% may be achievable through parameter tuning.

However, for products such as Product 7, the accuracy was as low as 31.2%, indicating

that product-specific models are not universally applicable across all products.

Model by Product Lineage2: Accuracy hovered around 60%, similar to the

results observed for language-based models. This implies that building models at the

product lineage level is also challenging.

Table 4: Accuracy by Classification Category

No. Data Type Data Size Accuracy (%)

(1) Overall Factory Result

1 All Data 328,070 64.8

(2) By Programming Language

2 C 100,426 64.2

3 C++ 196,208 61.6

4 C# 31,436 60.9

(3) By Product Type

5 Product 1 32,856 77.9

6 Product 2 77,526 77.4

7 Product 3 16,968 77.2

8 Product 4 52,256 61.2

9 Product 5 72,834 59.0

10 Product 6 36,618 58.3

11 Product 7 8,334 31.2

(4) By Product Lineage

12 Lineage 1 6,326 60.6

13 Lineage 2 99,018 58.0

14 Lineage 3 3,278 56.9

1 Variants with similar functions (e.g., performance, cost, or regional specs) are treated as the

same product type.

2 Classification based on software characteristics (e.g., control programs, GUI software, etc.).

Journal of Software Engineering Practice, 2025 6(1)

12

Table 5: Accuracy by Product Type and Programming Language Combination

No. Product Type Language Data Size Accuracy (%)

15 Product 5 C++ 47,172 84.9

16 Product 1 C 24,744 82.1

17 Product 6 C++ 36,504 79.7

18 Product 4 C 40,380 78.5

19 Product 2 C++ 70,854 75.0

20 Product 3 C++ 16,674 62.6

21 Product 5 C# 23,038 52.2

Table 6: Accuracy by Product Lineage and Programming Language Combination

No. Lineage Language Data Size Accuracy (%)

22 Lineage 2 C 93,620 78.3

23 Lineage 3 C++ 188,446 72.1

24 Lineage 2 C# 8,044 56.6

25 Lineage 1 C 3,496 51.6

26 Lineage 3 C# 23,362 50.7

Model by Combined Attributes: When models were built using combinations of

development language and either product type or product lineage, a maximum accuracy

of 84.9% was achieved. In particular, the combination of product type and development

language appears promising for practical use.

These results indicate that setting an appropriate classification scope is critical to

constructing practical classification models. It was observed that rather than using simple

criteria such as programming language or product lineage, classification designs that take

product-specific characteristics into account have a significant impact on accuracy.

Nonetheless, ensuring sufficient quantity and quality of training data remains a

challenge. Compared to OSS-based data, internally developed software often exhibits

structural, and quality biases accumulated over years of product evolution, making it

more difficult to extract consistent features. Based on the insights obtained in this section,

the next section focuses on software from Factory C, where software structures are more

stable, to further evaluate the applicability of the proposed method.

5.2.2. Evaluation in the Case of Stable Software Structures

In contrast to the previous section, the applicability of the classification method

was evaluated using software developed at Factory C within the organization. The

software developed at Factory C is embedded software responsible for equipment control.

A key characteristic of this software is its product variety expansion, which is achieved

Journal of Software Engineering Practice, 2025 6(1)

13

by standardizing the basic structure and recombining software components. All source

code is written in the C programming language, and component composition is varied

based on performance, scale, and operating region. This software matches the

classification conditions of "programming language" and "product type" suggested as

effective in the previous section, making it a suitable target for building the classification

model.

The construction method of the classification model and the dataset preparation

process followed the same approach used for Factory B. However, in this evaluation,

more detailed analysis was conducted by introducing commonly used performance

metrics—such as Precision, Recall, F1 score, and Area Under the Curve (AUC)—in

addition to Accuracy. This was deemed necessary to thoroughly analyze the risk of

overfitting and the balance of accuracy in the classification model for Factory C 's

software.

Table 7 shows the transition of each performance metric depending on the amount

of training data. When the number of training samples exceeded 10,000, improvements

were observed across all metrics in a well-balanced manner. In particular, the accuracy

reached 0.81 and the F1 score reached 0.80, both indicating results at a level feasible for

actual operation. However, when the number of training samples increased to 12,000,

some metrics (such as Precision) showed a decline.

 Figure 4 presents the ROC curves for models trained with 4,000 and 10,000

samples. The ROC curve plots the False Positive Rate (FPR) on the x-axis and the True

Positive Rate (TPR) on the y-axis, and the area under the curve (AUC score) is used to

evaluate classification performance. For the model trained with 4,000 samples, the AUC

score remained at 0.61, with the TPR increasing proportionally with the FPR—reaching a

TPR of 0.8 only when the FPR reached 0.6. In contrast, the model trained with 10,000

samples achieved an AUC score of 0.81 and reached a TPR of 0.8 already at an FPR of

0.2, indicating a high true positive rate with fewer false positives. These results suggest

that the model trained with 10,000 samples provides more balanced and higher

classification performance.

Table 7: Summary of Performance Metrics

Metric / Training Data Size 4,000 6,000 8,000 10,000 12,000

Accuracy score 0.63 0.73 0.75 0.81 0.90

Precision score 0.62 0.75 0.79 0.85 0.75

Recall score 0.61 0.70 0.80 0.77 0.92

F-measure score 0.61 0.72 0.80 0.80 0.83

AUC score 0.61 0.73 0.76 0.81 0.81

Journal of Software Engineering Practice, 2025 6(1)

14

Figure 4: ROC curves

Figure 5 presents a graph showing the transition of accuracy and error with

respect to the number of training epochs. The x-axis represents the number of training

epochs, while the y-axis shows either the accuracy or error. The model's accuracy on the

training data converged to around 0.8 with increasing training epochs, while the accuracy

on validation data stagnated around 0.5. At this point, the generalization error increased,

indicating overfitting. On the other hand, when using 10,000 training samples, both

accuracy and error demonstrated favorable trends. This suggests that securing a sufficient

amount of training data is essential for improving the practical utility of the classification

model.

Journal of Software Engineering Practice, 2025 6(1)

15

Figure 5: Trends in Accuracy and Error with Training Epochs

In the evaluation conducted at Factory B, performance metrics were not used, as

the primary objective was to verify the applicability of the classification model across

different contexts. In this section, however, such metrics are introduced as part of an

enhanced evaluation methodology, developed based on insights from the previous section

and reflecting the progression of this study.

6. Discussion

This study aimed to develop a source code classification model that can operate

securely within an organization’s local environment, without relying on external

resources. The model was evaluated using datasets from both OSS and internally

developed software in three factories. Through these evaluations, several insights were

gained regarding the key conditions necessary to enhance classification performance in

practical settings.

In the model trained on OSS data, increasing the training dataset size led to

improved performance, with accuracy reaching 82.1% when 10,000 samples were used.

Journal of Software Engineering Practice, 2025 6(1)

16

However, when this model was applied to source code from Factory A, the accuracy

dropped to 61.2%. This result indicates that differences in software structure and

development processes between the training and target domains can significantly impact

the model’s generalization capability. These findings underscore the importance of

domain alignment as a critical factor in ensuring classification effectiveness.

Evaluations using source code from internal factories revealed further insights. In

Factory B, training the model with only a single classification condition yielded limited

accuracy. In contrast, combining product type and programming language as

classification criteria resulted in a substantial improvement, achieving 84.9% accuracy.

This suggests that a uniform classification approach may be insufficient, and that

tailoring the model to the specific characteristics of the target software is more effective

for practical deployment.

The evaluation at Factory C partially corroborated the findings from Factory B.

The software at Factory C features a standardized and modularized structure and is

written exclusively in C, aligning well with the effective classification conditions

identified earlier. When trained on more than 10,000 samples, the model demonstrated

consistently high performance across multiple metrics: Accuracy (0.81), F1 Score (0.80),

and AUC (0.81). In contrast, training with only 4,000 samples led to high performance on

the training set but poor generalization to the validation set, indicating a tendency toward

overfitting.

Based on these results, we conclude that constructing a practical classification

model for internal software requires: (1) designing classification schemes that

appropriately narrow the target scope, and (2) securing a sufficient volume of labeled

training data—at least 10,000 instances. Furthermore, classification model performance

using multiple metrics—such as Precision, Recall, F1 Score, and AUC alongside

Accuracy—provides a more comprehensive and robust assessment.

Despite these promising results, the study faces the following threats to validity:

Internal Validity: The classification models constructed in this study require more than

10,000 labeled source code samples for training. Labels were automatically assigned

using commit comments and bug tracking IDs; however, concerns remain regarding the

completeness of defect-related information, the accuracy of mapping these labels to the

corresponding code, and the long-term feasibility of constructing large-scale, high-quality

labeled datasets.

External Validity: This study focused on specific factories and products within a single

company. Therefore, it is unclear whether the findings can be directly applied to other

companies or environments with different development styles. Differences in

Journal of Software Engineering Practice, 2025 6(1)

17

development structures, coding conventions, and version control practices may influence

model performance.

Construct Validity: The dataset used was limited to OSS and a subset of internal

projects, which may not fully reflect the variability in project scale or quality.

Furthermore, the performance evaluation employed only limited cross-validation and

statistical significance testing, requiring cautious interpretation when generalizing the

results.

To enhance the reproducibility and generalizability of classification models,

future work should refine labeling methods, consider domain alignment in classification

schemes, and validate models across various domains.

7. Conclusion and Future Work

This study aimed to construct a source code classification model that can operate

locally within organizations under security constraints. To this end, we developed and

evaluated classification models using both OSS and internally developed software.

Experimental results showed that the classification model trained on OSS data

achieved a maximum accuracy of 82%, demonstrating its potential for practical

application. In contrast, models trained on internal datasets exhibited substantial variation

in performance depending on factors such as factory, development target, software

structure, and development style. Nevertheless, by narrowing the scope of the target

systems and ensuring a sufficient volume of training data (approximately 10,000 samples

or more), it was possible to build classification models that exceeded the target accuracy

of 80% in certain cases.

Moving forward, we plan to improve development processes—such as

standardizing defect-fix records—to facilitate the collection of high-quality training data.

At the same time, we will explore the adoption of advanced AI techniques capable of

delivering high accuracy with smaller datasets. Additionally, through continuous

feedback from field applications, we aim to retrain and refine the classification models,

ultimately integrating them into code review support and quality assurance activities.

Journal of Software Engineering Practice, 2025 6(1)

18

References

1. Mohagheghi, P., & Conradi, R. (2007). Quality, productivity and economic benefits

of software reuse: A review of industrial studies. Empirical Software Engineering,

12(6), 471–516. https://link.springer.com/article/10.1007/s10664-007-9040-x

2. Zimmermann, T., Nagappan, N., Gall, H., Giger, E., & Murphy, B. (2009). Cross-

project defect prediction: A large scale experiment on data vs. domain vs. process. In

Proceedings of the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (pp. 91–100). https://doi.org/10.1145/1595696.1595713

3. Oman, P., & Hagemeister, J. (1992). Metrics for assessing a software system's

maintainability. In Proceedings of the Conference on Software Maintenance (pp.

337–344). IEEE. https://www.computer.org/csdl/proceedings-article/icsm/1992/

00242525/12OmNyrqzy2

4. McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software

Engineering, 2(4), 308–320. https://doi.org/10.1109/TSE.1976.233837

5. Yang, Y., Hu, Q., Zhang, H., Wang, Q., & Li, M. (2022). A survey on deep learning

for software engineering. ACM Computing Surveys (CSUR), 54(10s), 1–73.

https://dl.acm.org/doi/full/10.1145/3505243

6. Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine

learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4),

Article 81. https://doi.org/10.1145/3212695

7. Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component

failures. In Proceedings of the 28th International Conference on Software

Engineering (pp. 452–461). https://doi.org/10.1145/1134285.1134349

8. Khoshgoftaar, T. M., & Allen, E. B. (1998). Predicting the order of fault-prone

modules in legacy software. In Proceedings of the Ninth International Symposium on

Software Reliability Engineering (Cat. No. 98TB100257) (pp. 344–353). IEEE.

https://ieeexplore.ieee.org/abstract/document/730899

9. Xing, F., Guo, P., & Lyu, M. R. (2005). A novel method for early software quality

prediction based on support vector machine. In 16th IEEE International Symposium

on Software Reliability Engineering (ISSRE'05) (pp. 234–241). IEEE.

https://doi.org/10.1109/ISSRE.2005.6

10. Pham, T., Dam, H. K., Ng, S. W., Tran, T., Grundy, J., Ghose, A., Kim, T., & Kim,

C. J. (2018). A deep tree-based model for software defect prediction. arXiv preprint,

arXiv:1802.00921. https://arxiv.org/abs/1802.00921

11. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., & Shou, L. (2020).

CodeBERT: A pre-trained model for programming and natural languages. arXiv

preprint, arXiv:2002.08155. https://arxiv.org/abs/2002.08155

Journal of Software Engineering Practice, 2025 6(1)

19

12. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint, arXiv:1301.3781.

https://arxiv.org/abs/1301.3781

13. Rehurek, R. (n.d.). models.word2vec – Word2Vec embeddings – Gensim. Retrieved

May 6, 2025, from https://radimrehurek.com/gensim/models/word2vec.html

14. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X.

(2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265–

283). https://www.usenix.org/conference/osdi16/technical-sessions/presentation/

abadi

15. TensorFlow. (n.d.). Retrieved May 6, 2025, from https://www.tensorflow.org

Appendix. List of OSS Repositories Used for Classification Model

Construction

No. Repository URL

1 https://github.com/php/php-src.git

2 https://github.com/torvalds/linux.git

3 https://github.com/FFmpeg/FFmpeg.git

4 https://github.com/grpc/grpc.git

5 https://github.com/antirez/redis.git

6 https://github.com/git/git.git

7 https://github.com/RedisLabsModules/RediSearch.git

8 https://github.com/shadowsocks/shadowsocks-libev.git

9 https://github.com/firehol/netdata.git

10 https://github.com/mpc-hc/mpc-hc.git

11 https://github.com/jp9000/obs-studio.git

12 https://github.com/DrKLO/Telegram.git

13 https://github.com/ggreer/the_silver_searcher.git

14 https://github.com/pjreddie/darknet.git

15 https://github.com/pmq20/ruby-compiler.git

16 https://github.com/Bilibili/ijkplayer.git

17 https://github.com/happyfish100/libfastcommon.git

18 https://github.com/Tencent/wcdb.git

19 https://github.com/wg/wrk.git

20 https://github.com/tmux/tmux.git

