Journal of Software Engineering Practice, 2025 6(1)

Development and Evaluation of a Deep Learning-Based Model
for Source Code Quality Classification Using Industrial Data

Shuichi Tokumoto?, Ryotaro Imait, and Shinji Kusumoto?

! Information Technology R&D Center, Mitsubishi Electric Corporation, Japan

2 Graduate School of Information Science and Technology, The University of Osaka,
Japan

Abstract
In recent years, there has been growing interest in automatic source code classification
technologies to improve software productivity. However, many organizations face
difficulties adopting machine learning solutions due to security constraints that restrict
the use of online tools. This study aims to develop and validate a deep learning-based
model capable of operating entirely within a secure corporate environment to classify the
quality of source code. The model, referred to as the Source Code Quality Classification
Model (SCQC model), was trained and evaluated using both open-source software (OSS)
and internal source code. First, a training dataset was constructed from OSS repositories,
and the resulting model achieved an accuracy of up to 82.1%. To examine its
generalizability, the model was applied to internal source code. The accuracy declined
significantly due to differences in code structure and development practices, highlighting
the critical importance of domain alignment. Further experiments with internal data
demonstrated that restricting the target scope by programming language and product
category could improve prediction accuracy. These findings suggest that it is feasible to
build practical classification models when training data is tailored to the specific
characteristics of the development environment. The results indicate a promising
direction for implementing such models in real-world settings. However, challenges
remain, including the preparation of high-quality labeled training data and adapting
models to specific domains. Future work will focus on addressing these issues and
exploring integration of the SCQC model into actual code review and quality assurance
workflows.

Keywords: Source Code Quality, Deep Learning, Code Quality Classification, Domain
Adaptation, Industrial Software Development

1. Introduction

In recent years, the reuse-based development, where features are continuously
extended based on existing software, has become mainstream in software development.
This approach is commonly adopted in large and complex software systems to improve

1

Journal of Software Engineering Practice, 2025 6(1)

development efficiency and reduce effort [1]. However, in reuse-based development, a
lack of understanding of existing features and architecture, misjudgment of the scope of
impact, and inadequate testing can lead to unintended defects or performance
degradation, resulting in a decline in software quality. Prior research has reported
correlations between structural complexity, change history metrics, and defects [2]. To
prevent such quality degradation, it is essential to verify the reused software in advance
and conduct impact analysis to assess how modifications affect existing functionality.

As software functionality continues to grow and become more complex, source
code tends to expand. With repeated reuse, its readability often declines, leading to the
breakdown of the modular structure. This structural degradation leads to decreased
maintainability and complicates modification and maintenance tasks [3]. In many
organizations, coding is outsourced to external contractors, and the design staff who place
orders may not fully understand the structure or processing details of the source code [1].
Against this backdrop, it is crucial to understand the quality of the source code being reused
early in the development process to mitigate development risks. Traditional methods for
evaluating source code quality have relied on static analysis tools and software metrics (e.g.,
McCabe's cyclomatic complexity [4], Halstead metrics). However, these methods mainly
visualize the structural characteristics and complexity of the code and do not directly
predict the presence of defects or risks. As a result, the interpretation and judgment of
evaluation results heavily depend on the experience and skills of developers and quality
assurance personnel.

Recently, machine learning techniques—such as deep learning and generative
Al—have made rapid progress, expanding beyond fields like natural language processing
and image recognition to applications in software engineering as well [5][6]. This has
increased expectations for applying these technologies to automate software quality
assessment. However, many deep learning models rely on online knowledge bases, which
poses security risks in corporate environments where source code and other confidential
data cannot be sent externally. As a result, there is a growing need for training and
operating models entirely within local environments, especially in companies handling
sensitive software.

This study focuses on the applicability of machine learning models in actual
software development environments within companies. The goal is to construct a
lightweight defect classification model that can operate in limited environments and with
minimal information. Using general open-source software (OSS) tools, we constructed a
learning model that operates in local environments and designed and evaluated a practical
source code quality assessment method. Specifically, we used past source code
modification histories as training data and created a model to predict defects at the
function level. The model learning and prediction processes were performed on a PC
using methods and machine learning frameworks provided by OSS. To validate the

Journal of Software Engineering Practice, 2025 6(1)

effectiveness of this approach, we conducted evaluation experiments using the
company’s own source code and discussed its accuracy, reproducibility, and applicability
in business scenarios. In section 2, we review related research on software quality
prediction, while section 3 discusses the challenges to be addressed in this study. Section
4 explains the proposed quality assessment model, and section 5 presents the validation
results using OSS and internal source code. In section 6, we discuss these results, and in
section 7, we conclude this study.

2. Related Work

Software quality prediction has been a key technology in quality assurance for
software development. One of the most common methods for this is the use of software
metrics. A representative study in this area is McCabe's cyclomatic complexity [4].
Software metrics quantify the structural features of source code, and developers use these
values to predict the quality of the software. Similarly, many studies have been conducted
using statistical methods. For instance, Nagappan et al. statistically analyzed the
relationship between software metrics and defects and developed a defect prediction
model [7].

With the development of data utilization in statistical methods, machine learning
has gained attention for software quality prediction. In these approaches, predictive
models have been developed to identify the presence of defects using features derived
from source code and development process data. Khoshgoftaar et al. proposed a defect
prediction model using neural networks, demonstrating higher prediction accuracy
compared to traditional statistical methods [8]. Xing et al. performed quality prediction
based on software metrics using Support Vector Machines (SVM) [9].

With the advancement of deep learning, its application to software defect
prediction has also progressed. Deep learning has the advantage of being able to extract
and learn more complex features compared to traditional machine learning. One key
advantage is that it can automatically extract and learn structural and semantic features
from source code. Pham et al. proposed a deep learning model based on LSTM by
converting source code into Abstract Syntax Trees (ASTs) [10]. This approach enables
defect prediction while preserving the syntactic structure of the source code. More
recently, defect prediction methods using Transformer-based models have been studied,
improving prediction accuracy by applying natural language processing techniques to
source code analysis [11].

However, several challenges have been identified with the use of software metrics
and statistical methods. In software metrics-based approaches, the evaluation is limited to
the perspective of pre-defined software metrics, making it difficult to capture other
features. Additionally, since the evaluation is performed from the perspective of the

3

Journal of Software Engineering Practice, 2025 6(1)

evaluator, prediction accuracy tends to vary depending on the target project or domain.
Statistical methods are also heavily dependent on how data is collected, its quantity, and
its distribution, making general application difficult [7][9]. Furthermore, in machine
learning-based quality prediction research using OSS, high accuracy is not always
achieved. For example, while Pham et al.'s deep learning model showed some
improvement in accuracy, it was not demonstrated whether that accuracy is useful in
actual development environments.

Most existing methods have been validated mainly for research or OSS, with few
applications in real corporate settings. Their effectiveness is often limited by the
characteristics of the target software. In practice, technical and organizational barriers
remain, such as data preparation, model accuracy, operational constraints, and cost.

This study addresses these issues by building and evaluating a deep learning
model aimed at practical use within companies. Specific constraints and challenges are
discussed in the next section.

3. Challenges in This Study

This study aims to construct a system for source code quality assessment
(predicting the presence or absence of defects) using deep learning in a corporate
software development environment. However, in order to implement and operate a
practical deep learning model within a company, several technical and operational
challenges must be addressed beforehand. This section outlines the constraints underlying
this study and the major challenges that need to be resolved.

Operation in a Local Environment: Many software systems developed within
companies contain sensitive information, such as proprietary data or customer details. As
a result, using external cloud services or APIs for training and inference is difficult due to
the risk of information leakage. Therefore, it is essential to construct and operate a model
that can complete the entire process of training and inference within the company’s
closed network environment. This requires the ability to build models using OSS
frameworks for training, assuming that the process is self-contained.

Acquisition of Training Data: To construct a quality assessment model using
deep learning, a large training dataset is necessary. For learning to determine the presence
or absence of defects, labeled source code indicating good or bad quality is required.
However, it is rare for source code within a company to have pre-existing defect labels.
As a result, it is essential to have defect-related information that can be labeled, along
with the corresponding source code management. This implies that effective defect
management and version control systems are essential for generating training datasets.

Journal of Software Engineering Practice, 2025 6(1)

Accuracy of Quality Assessment: Based on internal interviews, it was found that
software development requires a prediction accuracy of 80% or higher. This requirement
is based on the cost and risks of corrective actions that would be taken based on the
prediction results. If the prediction accuracy is low, incorrect modifications or rework
may occur, potentially leading to reduced work efficiency.

4. Evaluation Method

4.1. Basic Method

This study proposes a deep learning-based method for assessing source code
quality, aiming to reduce subjectivity and reliance on developer experience. The method
builds a classification model—a model that predicts whether a given unit of source code
contains a defect (1) or not (0). The model is trained using small code units labeled with
defect information, based on actual source code and related defect records. In this study,
a function or method is used as the unit of classification.

For vectorizing the source code, the open-source Word2Vec [12][13] is used, and
for constructing the classification model, TensorFlow [14][15] is employed. Word2Vec is
a distributed representation learning technique in natural language processing that uses
neural networks to learn the semantic similarity of words (in this case, source code
tokens) as numerical vectors. TensorFlow is an open-source machine learning library
developed by Google. It is easy to operate in a local environment and has the advantage
of being suitable for adoption in corporate environments, thanks to extensive
documentation and community support. Since uploading company source code to the
cloud for training poses security risks, such as information leakage, TensorFlow, which
can be fully utilized in a local environment, is adopted in this study to suit internal use.

Figure 1 shows the learning flow of the proposed source code quality prediction
method in this study. The method consists of the following three processes:

Source Code Acquisition Process: The source code used for training is obtained
from version control systems such as Git. By analyzing the modification history, the
differences before and after each commit are examined to identify functions where
defects were fixed. The version of the code before the fix is labeled as "defect present
(1)," and the version after the fix as "defect absent (0)." This labeling process is
performed automatically using a tool.

Training Data Creation Process: For the labeled functions, preprocessing steps
such as removing blank lines and comments and tokenizing the code are applied. Then,
distributed representations are generated using Word2Vec, resulting in each function
being represented as a fixed-length vector suitable for input to the classification model.

Journal of Software Engineering Practice, 2025 6(1)

| A
Data Cleaning
Defect Present Source
Source Code |- +
Source Code e A 4 Defect Information
.- Acquisition
Tokenizing 1
F 3
Defect Absent
_ -
i‘:ﬂii_ - ¥ Model Training
DefecE Information Vectorizing (TensorFlow)
Commit Comments (Word2Vec)
-._._...-""'—-—_
Source Code Training Data Prediction Model
Acquisition Process Creation Process Training Process

Figure 1: Learning Flow of the Source Code Quality Prediction Method

Classification Model Training Process: Using the vectorized functions and their
corresponding labels obtained in the previous step, a binary classification model is built
with TensorFlow. This model learns to predict the presence or absence of defects based
on the structural features of the functions, serving as a classifier that evaluates the quality
of new functions.

The trained classification model outputs the likelihood of defect presence (1/0)
when given new source code (functions) as input. By providing a clear binary output, this
method eliminates subjective evaluation by developers and offers intuitive, easily
understandable metrics. This method is intended to serve as an auxiliary tool for code
review and specification verification by developers, with the final quality judgment being
made through human review.

4.2. Implementation and Evaluation Environment

To verify the method proposed in the previous section, the Defect Classification
System (DCS) was developed. The operating system, programming languages, and
existing tools used in the development of DCS are listed in Table 1. In DCS, Word2Vec
was first used to learn distributed representations in order to vectorize source code at the
function level. For this training, the Noise-Contrastive Estimation (NCE) loss function
was used, and optimization was performed using the GradientDescentOptimizer. The key
parameter settings for training Word2Vec are shown in Table 2. The resulting vectors
were then used to train a binary classification model (referred to as the classification
model) that predicts the presence or absence of defects. In this training process, the cross-
entropy loss function was used, and RMSPropOptimizer was adopted as the optimization
method. These configuration settings were determined at the outset of the study and were
consistently applied throughout all evaluations presented in this paper.

Journal of Software Engineering Practice, 2025 6(1)

Table 1: DCS Software Environment

0S Ubuntu 16.04 LTS

Programming Language Python 3.6.1

0SS Machine Learning Framework | TensorFlow 1.1.0
Language Processing Tool Word2Vec 0.5.1

Table 2: Configuration and Operational Parameters of the Word2Vec

Batch Size 500
Embedding Size 300
Vocabulary Size 2,000
Window Size 3
Learning Rate 0.05
Number of Epochs 100,000

4.3. Data Collection and Composition for Training

In machine learning, improving model performance requires large volumes of
high-quality training data. In this study, we constructed labeled source code datasets that
indicate the presence or absence of defects, using not only OSS but also internally
developed code.

To facilitate labeling, a dedicated tool was developed. This tool analyzes commit
comments stored in version control systems and automatically extracts commits
containing defect-related keywords such as "bug,"” "Bug," "Fix," "fix," "Fixed," "fixed,"
"Patch,” "patch,” "defect,” and "Defect.” It then obtains the code differences between the
relevant revisions to identify the modified functions. The functions before the fix are
labeled as “defect present (1),” and the functions after the fix are labeled as “defect
absent (0),” which are then registered as training data on a function-by-function basis.

Through this approach, we were able to systematically collect and construct
training datasets consisting of approximately 1,000 to 10,000 function-level code
samples. The target source code used for evaluation was primarily embedded software,
and the programming languages analyzed included C, C++, and C#.

5. Experiments and Evaluation

This section verifies the effectiveness of the proposed source code quality
classification method, specifically focusing on the classification model that functions as
part of the DCS. The evaluation was conducted from the following perspectives:

Journal of Software Engineering Practice, 2025 6(1)

« Evaluation of the performance and practicality of the classification model
constructed using OSS data

« Evaluation of the applicability of the model to different development
environments and types of software

o Performance evaluation of the classification model when applied to software with
stable software components

5.1. Evaluation of the Classification Model Built with OSS Data

The evaluation was conducted using source code from OSS projects written in the
C language. Multiple OSS projects were selected as targets, based on the ease of
obtaining defect-related information and their active and continuously maintained
development communities (for details of the projects, refer to Appendix). From each
project, a labeled dataset was created by associating the source code with its
corresponding defect-related information. The dataset was randomly split into 90%
training data and 10% validation data, ensuring that different data were used for training
and validation to evaluate generalization performance.

To assess the effect of training data volume on model accuracy, the number of
training instances was varied incrementally (from 1,000 to 10,000). As shown in Figure
2, the accuracy improved as the data volume increased, achieving an accuracy of 80.4%
when trained with 8,000 samples. This result exceeded the operational target defined in
this study. However, after 8,000 samples, the accuracy plateaued, indicating diminishing
returns from adding more data.

100
80.4 §2.1
80
= 60
=
3 40
=
20
0
0 2000 4000 6000 8000 10000
Training Samples

Figure 2: Trends in Accuracy with Varying Training Data Volume

Journal of Software Engineering Practice, 2025 6(1)

The classification model built from OSS code (trained with 10,000 samples) was
applied to software developed at Factory A within the company. All of the source code
was written in the C language. When applied to 1,000 validation samples created
similarly to the OSS data, the model achieved an accuracy of 61.2%. This relatively low
accuracy suggests that the model had limited generalization capability, likely due to
structural and functional dissimilarity between the OSS and Factory A's software.

As a comparative experiment, six developers from other departments manually
classified a subset (120 samples) of Factory A’s validation data. The conditions for the
manual classification were as follows:

« Only the source code of the validation data was provided (no specification
information)

e All code samples were unfamiliar to the participants

o No time limit was imposed

o External references were prohibited

Table 3 presents the classification results by each developer, and Figure 3 compares
their average accuracy with that of the classification model. The average human accuracy
was 53.5%, which was lower than the model’s accuracy of 61.2%. This result suggests
that the classification model demonstrates a certain degree of effectiveness when no
specification information is available.

Table 3: Results of Manual Classification by Developers

Participant | Accuracy Tgtal Response Development Total Lin_es of
Time Experience Code Written (Past)

A 55.8% 2h 51min 8 years 5KL

B 50.0% 2h 36min 8 years 2KL

C 48.3% 4h 14min 9 years 3KL

D 55.0% 4h 28min 10 years 5KL

E 57.5% 2h 06min 14 years 100KL

F 54.2% 1h 26min 26 years 200KL

Journal of Software Engineering Practice, 2025 6(1)

100.00
82.10
80.00
< 61.20
= 6000 5350
B
3 4000
.._n:-
20.00
0.00
Average of 085S Model on 0SS 0SS Model on Factory
Participants Data A Code
Evaluation Target

Figure 3: Accuracy Comparison Between Human Participants and the Classification
Model

Nevertheless, both results fell significantly short of the target operational accuracy
(>80%) set for internal use. This highlights the limitations of applying OSS-trained
models to internal software. Based on this challenge, the following sections present the
construction and accuracy evaluation of models trained on internally developed software,
aiming for practical deployment.

5.2. Evaluation Using Product Software

5.2.1. Evaluation Based on Development Environments and Software Types

In this section, the classification method was evaluated using software developed
at Factory B within the organization. The target software was embedded software
developed under consistent processes and quality standards within the factory. Similar to
the evaluation using OSS, a classification model was built from source code in the
version control system by leveraging bug tracking IDs and commit messages. Based on
the findings from the OSS-based evaluation, it was determined that at least 8,000 training
samples are necessary to achieve an accuracy above 80%. Therefore, only results for
datasets with 8,000 samples or more are reported here. Evaluation results categorized by
development environments and software characteristics are presented in Tables 4 to 6.

Factory-Wide Classification Model: The model trained on the entire dataset
(328,070 samples) achieved an accuracy of 64.8%, which is comparable to the result
observed with Factory A's data. This indicates that building a generalized classification
model across all software in the factory may be difficult.

10

Journal of Software Engineering Practice, 2025 6(1)

Model by Programming Language: Models built separately for C, C++, and C#
all achieved accuracy in the 60% range, suggesting that, as with the factory-wide model,
classification based solely on programming language is not highly effective.

Model by Product Type!: Accuracy varied significantly across products (from
77.9% to 31.2%). For Products 1 through 3, accuracy was already near the target, and
further improvement beyond 80% may be achievable through parameter tuning.
However, for products such as Product 7, the accuracy was as low as 31.2%, indicating
that product-specific models are not universally applicable across all products.

Model by Product Lineage?: Accuracy hovered around 60%, similar to the
results observed for language-based models. This implies that building models at the
product lineage level is also challenging.

Table 4: Accuracy by Classification Category

No. ‘ Data Type ‘ Data Size ‘ Accuracy (%)
(1) Overall Factory Result

1 | AllData | 328,070 | 648
(2) By Programming Language

2 C 100,426 64.2
3 C++ 196,208 61.6
4 C# 31,436 60.9
(3) By Product Type

5 Product 1 32,856 77.9
6 Product 2 77,526 774
7 Product 3 16,968 77.2
8 Product 4 52,256 61.2
9 Product 5 72,834 59.0
10 Product 6 36,618 58.3
11 Product 7 8,334 31.2
(4) By Product Lineage

12 Lineage 1 6,326 60.6
13 Lineage 2 99,018 58.0
14 Lineage 3 3,278 56.9

! Variants with similar functions (e.g., performance, cost, or regional specs) are treated as the
same product type.

2 Classification based on software characteristics (e.g., control programs, GUI software, etc.).

11

Journal of Software Engineering Practice, 2025 6(1)

Table 5: Accuracy by Product Type and Programming Language Combination

No. Product Type | Language | Data Size Accuracy (%)
15 Product 5 C++ 47,172 84.9
16 Product 1 C 24,744 82.1
17 Product 6 C++ 36,504 79.7
18 Product 4 C 40,380 78.5
19 Product 2 C++ 70,854 75.0
20 Product 3 C++ 16,674 62.6
21 Product 5 C# 23,038 52.2

Table 6: Accuracy by Product Lineage and Programming Language Combination

No. Lineage Language Data Size Accuracy (%)
22 Lineage 2 C 93,620 78.3
23 Lineage 3 C++ 188,446 72.1
24 Lineage 2 C# 8,044 56.6
25 Lineage 1 C 3,496 51.6
26 Lineage 3 C# 23,362 50.7

Model by Combined Attributes: When models were built using combinations of
development language and either product type or product lineage, a maximum accuracy
of 84.9% was achieved. In particular, the combination of product type and development
language appears promising for practical use.

These results indicate that setting an appropriate classification scope is critical to
constructing practical classification models. It was observed that rather than using simple
criteria such as programming language or product lineage, classification designs that take
product-specific characteristics into account have a significant impact on accuracy.

Nonetheless, ensuring sufficient quantity and quality of training data remains a
challenge. Compared to OSS-based data, internally developed software often exhibits
structural, and quality biases accumulated over years of product evolution, making it
more difficult to extract consistent features. Based on the insights obtained in this section,
the next section focuses on software from Factory C, where software structures are more
stable, to further evaluate the applicability of the proposed method.

5.2.2. Evaluation in the Case of Stable Software Structures

In contrast to the previous section, the applicability of the classification method
was evaluated using software developed at Factory C within the organization. The
software developed at Factory C is embedded software responsible for equipment control.
A key characteristic of this software is its product variety expansion, which is achieved

12

Journal of Software Engineering Practice, 2025 6(1)

by standardizing the basic structure and recombining software components. All source
code is written in the C programming language, and component composition is varied
based on performance, scale, and operating region. This software matches the
classification conditions of "programming language" and "product type" suggested as
effective in the previous section, making it a suitable target for building the classification
model.

The construction method of the classification model and the dataset preparation
process followed the same approach used for Factory B. However, in this evaluation,
more detailed analysis was conducted by introducing commonly used performance
metrics—such as Precision, Recall, F1 score, and Area Under the Curve (AUC)—in
addition to Accuracy. This was deemed necessary to thoroughly analyze the risk of
overfitting and the balance of accuracy in the classification model for Factory C's
software.

Table 7 shows the transition of each performance metric depending on the amount
of training data. When the number of training samples exceeded 10,000, improvements
were observed across all metrics in a well-balanced manner. In particular, the accuracy
reached 0.81 and the F1 score reached 0.80, both indicating results at a level feasible for
actual operation. However, when the number of training samples increased to 12,000,
some metrics (such as Precision) showed a decline.

Figure 4 presents the ROC curves for models trained with 4,000 and 10,000
samples. The ROC curve plots the False Positive Rate (FPR) on the x-axis and the True
Positive Rate (TPR) on the y-axis, and the area under the curve (AUC score) is used to
evaluate classification performance. For the model trained with 4,000 samples, the AUC
score remained at 0.61, with the TPR increasing proportionally with the FPR—reaching a
TPR of 0.8 only when the FPR reached 0.6. In contrast, the model trained with 10,000
samples achieved an AUC score of 0.81 and reached a TPR of 0.8 already at an FPR of
0.2, indicating a high true positive rate with fewer false positives. These results suggest
that the model trained with 10,000 samples provides more balanced and higher
classification performance.

Table 7: Summary of Performance Metrics

Metric / Training Data Size 4,000 6,000 8,000 10,000 12,000
Accuracy score 0.63 0.73 0.75 0.81 0.90
Precision score 0.62 0.75 0.79 0.85 0.75
Recall score 0.61 0.70 0.80 0.77 0.92
F-measure score 0.61 0.72 0.80 0.80 0.83
AUC score 0.61 0.73 0.76 0.81 0.81

13

Journal of Software Engineering Practice, 2025 6(1)

101

|
(=]

o
®
o
©

o
o
o
o

True Positive Rate

o
>

True Positive Rate
o
-

o
~
o
N

o
°
o
o

0.’0 ofz 0:4 0?6 O.'S 1?0 0.0 0.2 04 0.6 08 1.0
False Positive Rate False Positive Rate

(a) 4,000 training samples (b) 10,000 training samples

Figure 4: ROC curves

Figure 5 presents a graph showing the transition of accuracy and error with
respect to the number of training epochs. The x-axis represents the number of training
epochs, while the y-axis shows either the accuracy or error. The model's accuracy on the
training data converged to around 0.8 with increasing training epochs, while the accuracy
on validation data stagnated around 0.5. At this point, the generalization error increased,
indicating overfitting. On the other hand, when using 10,000 training samples, both
accuracy and error demonstrated favorable trends. This suggests that securing a sufficient
amount of training data is essential for improving the practical utility of the classification
model.

14

Journal of Software Engineering Practice, 2025 6(1)

14k 18k : ak

(a) 4,000 training samples (b) 10.000 training samples

Training Data Validation Data
(1) Accuracy trend
a) 4,000 training samples 10.000 training samples
g P g P
Training Error Generalization Error

(2) Error trend

Figure 5: Trends in Accuracy and Error with Training Epochs

In the evaluation conducted at Factory B, performance metrics were not used, as
the primary objective was to verify the applicability of the classification model across
different contexts. In this section, however, such metrics are introduced as part of an
enhanced evaluation methodology, developed based on insights from the previous section
and reflecting the progression of this study.

6. Discussion

This study aimed to develop a source code classification model that can operate
securely within an organization’s local environment, without relying on external
resources. The model was evaluated using datasets from both OSS and internally
developed software in three factories. Through these evaluations, several insights were
gained regarding the key conditions necessary to enhance classification performance in
practical settings.

In the model trained on OSS data, increasing the training dataset size led to
improved performance, with accuracy reaching 82.1% when 10,000 samples were used.

15

Journal of Software Engineering Practice, 2025 6(1)

However, when this model was applied to source code from Factory A, the accuracy
dropped to 61.2%. This result indicates that differences in software structure and
development processes between the training and target domains can significantly impact
the model’s generalization capability. These findings underscore the importance of
domain alignment as a critical factor in ensuring classification effectiveness.

Evaluations using source code from internal factories revealed further insights. In
Factory B, training the model with only a single classification condition yielded limited
accuracy. In contrast, combining product type and programming language as
classification criteria resulted in a substantial improvement, achieving 84.9% accuracy.
This suggests that a uniform classification approach may be insufficient, and that
tailoring the model to the specific characteristics of the target software is more effective
for practical deployment.

The evaluation at Factory C partially corroborated the findings from Factory B.
The software at Factory C features a standardized and modularized structure and is
written exclusively in C, aligning well with the effective classification conditions
identified earlier. When trained on more than 10,000 samples, the model demonstrated
consistently high performance across multiple metrics: Accuracy (0.81), F1 Score (0.80),
and AUC (0.81). In contrast, training with only 4,000 samples led to high performance on
the training set but poor generalization to the validation set, indicating a tendency toward
overfitting.

Based on these results, we conclude that constructing a practical classification
model for internal software requires: (1) designing classification schemes that
appropriately narrow the target scope, and (2) securing a sufficient volume of labeled
training data—at least 10,000 instances. Furthermore, classification model performance
using multiple metrics—such as Precision, Recall, F1 Score, and AUC alongside
Accuracy—provides a more comprehensive and robust assessment.

Despite these promising results, the study faces the following threats to validity:

Internal Validity: The classification models constructed in this study require more than
10,000 labeled source code samples for training. Labels were automatically assigned
using commit comments and bug tracking IDs; however, concerns remain regarding the
completeness of defect-related information, the accuracy of mapping these labels to the
corresponding code, and the long-term feasibility of constructing large-scale, high-quality
labeled datasets.

External Validity: This study focused on specific factories and products within a single
company. Therefore, it is unclear whether the findings can be directly applied to other
companies or environments with different development styles. Differences in

16

Journal of Software Engineering Practice, 2025 6(1)

development structures, coding conventions, and version control practices may influence
model performance.

Construct Validity: The dataset used was limited to OSS and a subset of internal
projects, which may not fully reflect the variability in project scale or quality.
Furthermore, the performance evaluation employed only limited cross-validation and
statistical significance testing, requiring cautious interpretation when generalizing the
results.

To enhance the reproducibility and generalizability of classification models,
future work should refine labeling methods, consider domain alignment in classification
schemes, and validate models across various domains.

7. Conclusion and Future Work

This study aimed to construct a source code classification model that can operate
locally within organizations under security constraints. To this end, we developed and
evaluated classification models using both OSS and internally developed software.

Experimental results showed that the classification model trained on OSS data
achieved a maximum accuracy of 82%, demonstrating its potential for practical
application. In contrast, models trained on internal datasets exhibited substantial variation
in performance depending on factors such as factory, development target, software
structure, and development style. Nevertheless, by narrowing the scope of the target
systems and ensuring a sufficient volume of training data (approximately 10,000 samples
or more), it was possible to build classification models that exceeded the target accuracy
of 80% in certain cases.

Moving forward, we plan to improve development processes—such as
standardizing defect-fix records—to facilitate the collection of high-quality training data.
At the same time, we will explore the adoption of advanced Al techniques capable of
delivering high accuracy with smaller datasets. Additionally, through continuous
feedback from field applications, we aim to retrain and refine the classification models,
ultimately integrating them into code review support and quality assurance activities.

17

Journal of Software Engineering Practice, 2025 6(1)

References

1.

10.

11.

Mohagheghi, P., & Conradi, R. (2007). Quality, productivity and economic benefits
of software reuse: A review of industrial studies. Empirical Software Engineering,
12(6), 471-516. https://link.springer.com/article/10.1007/s10664-007-9040-x

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., & Murphy, B. (2009). Cross-
project defect prediction: A large scale experiment on data vs. domain vs. process. In
Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (pp. 91-100). https://doi.org/10.1145/1595696.1595713

Oman, P., & Hagemeister, J. (1992). Metrics for assessing a software system's
maintainability. In Proceedings of the Conference on Software Maintenance (pp.
337-344). IEEE. https://www.computer.org/csdl/proceedings-article/icsm/1992/
00242525/120mNyrqzy2

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software
Engineering, 2(4), 308-320. https://doi.org/10.1109/TSE.1976.233837

Yang, Y., Hu, Q., Zhang, H., Wang, Q., & Li, M. (2022). A survey on deep learning
for software engineering. ACM Computing Surveys (CSUR), 54(10s), 1-73.
https://dl.acm.org/doi/full/10.1145/3505243

Allamanis, M., Barr, E. T., Devanbu, P., & Sutton, C. (2018). A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4),
Acrticle 81. https://doi.org/10.1145/3212695

Nagappan, N., Ball, T., & Zeller, A. (2006). Mining metrics to predict component
failures. In Proceedings of the 28th International Conference on Software
Engineering (pp. 452-461). https://doi.org/10.1145/1134285.1134349

Khoshgoftaar, T. M., & Allen, E. B. (1998). Predicting the order of fault-prone
modules in legacy software. In Proceedings of the Ninth International Symposium on
Software Reliability Engineering (Cat. No. 98TB100257) (pp. 344-353). IEEE.
https://ieeexplore.ieee.org/abstract/document/730899

Xing, F., Guo, P., & Lyu, M. R. (2005). A novel method for early software quality
prediction based on support vector machine. In 16th IEEE International Symposium
on Software Reliability Engineering (ISSRE'05) (pp. 234-241). IEEE.
https://doi.org/10.1109/ISSRE.2005.6

Pham, T., Dam, H. K., Ng, S. W., Tran, T., Grundy, J., Ghose, A., Kim, T., & Kim,
C. J. (2018). A deep tree-based model for software defect prediction. arXiv preprint,
arXiv:1802.00921. https://arxiv.org/abs/1802.00921

Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., & Shou, L. (2020).
CodeBERT: A pre-trained model for programming and natural languages. arXiv
preprint, arXiv:2002.08155. https://arxiv.org/abs/2002.08155

18

Journal of Software Engineering Practice, 2025 6(1)

12. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. arXiv preprint, arxiv:1301.3781.
https://arxiv.org/abs/1301.3781

13. Rehurek, R. (n.d.). models.word2vec — Word2Vec embeddings — Gensim. Retrieved
May 6, 2025, from https://radimrehurek.com/gensim/models/word2vec.html

14. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X.
(2016). TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16) (pp. 265—
283). https://www.usenix.org/conference/osdil6/technical-sessions/presentation/
abadi

15. TensorFlow. (n.d.). Retrieved May 6, 2025, from https://www.tensorflow.org

Appendix. List of OSS Repositories Used for Classification Model
Construction

No. Repository URL

1 https://github.com/php/php-src.git

2 https://github.com/torvalds/linux.git

3 https://github.com/FFmpeg/FFmpeg.qgit

4 https://github.com/grpc/grpc.git

5 https://github.com/antirez/redis.git

6 https://github.com/git/git.git

7 https://github.com/RedisLabsModules/RediSearch.git
8 https://github.com/shadowsocks/shadowsocks-libev.git
9 https://github.com/firehol/netdata.git

10 https://github.com/mpc-hc/mpc-hc.git

11 https://github.com/jp9000/obs-studio.qgit

12 https://github.com/DrKLO/Telegram.git

13 https://github.com/ggreer/the silver searcher.git
14 https://github.com/pjreddie/darknet.git

15 https://github.com/pmg20/ruby-compiler.git

16 https://github.com/Bilibili/ijkplayer.git

17 https://github.com/happyfish100/libfastcommon.git
18 https://github.com/Tencent/wcdb.qgit

19 https://github.com/wg/wrk.git

20 https://github.com/tmux/tmux.git

19

