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Abstract 

In recent years, there has been growing interest in automatic source code classification 

technologies to improve software productivity. However, many organizations face 

difficulties adopting machine learning solutions due to security constraints that restrict 

the use of online tools. This study aims to develop and validate a deep learning-based 

model capable of operating entirely within a secure corporate environment to classify the 

quality of source code. The model, referred to as the Source Code Quality Classification 

Model (SCQC model), was trained and evaluated using both open-source software (OSS) 

and internal source code. First, a training dataset was constructed from OSS repositories, 

and the resulting model achieved an accuracy of up to 82.1%. To examine its 

generalizability, the model was applied to internal source code. The accuracy declined 

significantly due to differences in code structure and development practices, highlighting 

the critical importance of domain alignment. Further experiments with internal data 

demonstrated that restricting the target scope by programming language and product 

category could improve prediction accuracy. These findings suggest that it is feasible to 

build practical classification models when training data is tailored to the specific 

characteristics of the development environment. The results indicate a promising 

direction for implementing such models in real-world settings. However, challenges 

remain, including the preparation of high-quality labeled training data and adapting 

models to specific domains. Future work will focus on addressing these issues and 

exploring integration of the SCQC model into actual code review and quality assurance 

workflows. 

Keywords: Source Code Quality, Deep Learning, Code Quality Classification, Domain 

Adaptation, Industrial Software Development 

1. Introduction 

In recent years, the reuse-based development, where features are continuously 

extended based on existing software, has become mainstream in software development. 

This approach is commonly adopted in large and complex software systems to improve 
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development efficiency and reduce effort [1]. However, in reuse-based development, a 

lack of understanding of existing features and architecture, misjudgment of the scope of 

impact, and inadequate testing can lead to unintended defects or performance 

degradation, resulting in a decline in software quality. Prior research has reported 

correlations between structural complexity, change history metrics, and defects [2]. To 

prevent such quality degradation, it is essential to verify the reused software in advance 

and conduct impact analysis to assess how modifications affect existing functionality. 

As software functionality continues to grow and become more complex, source 

code tends to expand. With repeated reuse, its readability often declines, leading to the 

breakdown of the modular structure. This structural degradation leads to decreased 

maintainability and complicates modification and maintenance tasks [3]. In many 

organizations, coding is outsourced to external contractors, and the design staff who place 

orders may not fully understand the structure or processing details of the source code [1]. 

Against this backdrop, it is crucial to understand the quality of the source code being reused 

early in the development process to mitigate development risks. Traditional methods for 

evaluating source code quality have relied on static analysis tools and software metrics (e.g., 

McCabe's cyclomatic complexity [4], Halstead metrics). However, these methods mainly 

visualize the structural characteristics and complexity of the code and do not directly 

predict the presence of defects or risks. As a result, the interpretation and judgment of 

evaluation results heavily depend on the experience and skills of developers and quality 

assurance personnel. 

Recently, machine learning techniques—such as deep learning and generative 

AI—have made rapid progress, expanding beyond fields like natural language processing 

and image recognition to applications in software engineering as well [5][6]. This has 

increased expectations for applying these technologies to automate software quality 

assessment. However, many deep learning models rely on online knowledge bases, which 

poses security risks in corporate environments where source code and other confidential 

data cannot be sent externally. As a result, there is a growing need for training and 

operating models entirely within local environments, especially in companies handling 

sensitive software. 

This study focuses on the applicability of machine learning models in actual 

software development environments within companies. The goal is to construct a 

lightweight defect classification model that can operate in limited environments and with 

minimal information. Using general open-source software (OSS) tools, we constructed a 

learning model that operates in local environments and designed and evaluated a practical 

source code quality assessment method. Specifically, we used past source code 

modification histories as training data and created a model to predict defects at the 

function level. The model learning and prediction processes were performed on a PC 

using methods and machine learning frameworks provided by OSS. To validate the 
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effectiveness of this approach, we conducted evaluation experiments using the 

company’s own source code and discussed its accuracy, reproducibility, and applicability 

in business scenarios. In section 2, we review related research on software quality 

prediction, while section 3 discusses the challenges to be addressed in this study. Section 

4 explains the proposed quality assessment model, and section 5 presents the validation 

results using OSS and internal source code. In section 6, we discuss these results, and in 

section 7, we conclude this study. 

2. Related Work 

Software quality prediction has been a key technology in quality assurance for 

software development. One of the most common methods for this is the use of software 

metrics. A representative study in this area is McCabe's cyclomatic complexity [4]. 

Software metrics quantify the structural features of source code, and developers use these 

values to predict the quality of the software. Similarly, many studies have been conducted 

using statistical methods. For instance, Nagappan et al. statistically analyzed the 

relationship between software metrics and defects and developed a defect prediction 

model [7]. 

With the development of data utilization in statistical methods, machine learning 

has gained attention for software quality prediction. In these approaches, predictive 

models have been developed to identify the presence of defects using features derived 

from source code and development process data. Khoshgoftaar et al. proposed a defect 

prediction model using neural networks, demonstrating higher prediction accuracy 

compared to traditional statistical methods [8]. Xing et al. performed quality prediction 

based on software metrics using Support Vector Machines (SVM) [9]. 

With the advancement of deep learning, its application to software defect 

prediction has also progressed. Deep learning has the advantage of being able to extract 

and learn more complex features compared to traditional machine learning. One key 

advantage is that it can automatically extract and learn structural and semantic features 

from source code. Pham et al. proposed a deep learning model based on LSTM by 

converting source code into Abstract Syntax Trees (ASTs) [10]. This approach enables 

defect prediction while preserving the syntactic structure of the source code. More 

recently, defect prediction methods using Transformer-based models have been studied, 

improving prediction accuracy by applying natural language processing techniques to 

source code analysis [11]. 

However, several challenges have been identified with the use of software metrics 

and statistical methods. In software metrics-based approaches, the evaluation is limited to 

the perspective of pre-defined software metrics, making it difficult to capture other 

features. Additionally, since the evaluation is performed from the perspective of the 
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evaluator, prediction accuracy tends to vary depending on the target project or domain. 

Statistical methods are also heavily dependent on how data is collected, its quantity, and 

its distribution, making general application difficult [7][9]. Furthermore, in machine 

learning-based quality prediction research using OSS, high accuracy is not always 

achieved. For example, while Pham et al.'s deep learning model showed some 

improvement in accuracy, it was not demonstrated whether that accuracy is useful in 

actual development environments. 

Most existing methods have been validated mainly for research or OSS, with few 

applications in real corporate settings. Their effectiveness is often limited by the 

characteristics of the target software. In practice, technical and organizational barriers 

remain, such as data preparation, model accuracy, operational constraints, and cost.  

This study addresses these issues by building and evaluating a deep learning 

model aimed at practical use within companies. Specific constraints and challenges are 

discussed in the next section. 

3. Challenges in This Study 

This study aims to construct a system for source code quality assessment 

(predicting the presence or absence of defects) using deep learning in a corporate 

software development environment. However, in order to implement and operate a 

practical deep learning model within a company, several technical and operational 

challenges must be addressed beforehand. This section outlines the constraints underlying 

this study and the major challenges that need to be resolved. 

Operation in a Local Environment: Many software systems developed within 

companies contain sensitive information, such as proprietary data or customer details. As 

a result, using external cloud services or APIs for training and inference is difficult due to 

the risk of information leakage. Therefore, it is essential to construct and operate a model 

that can complete the entire process of training and inference within the company’s 

closed network environment. This requires the ability to build models using OSS 

frameworks for training, assuming that the process is self-contained. 

Acquisition of Training Data: To construct a quality assessment model using 

deep learning, a large training dataset is necessary. For learning to determine the presence 

or absence of defects, labeled source code indicating good or bad quality is required. 

However, it is rare for source code within a company to have pre-existing defect labels. 

As a result, it is essential to have defect-related information that can be labeled, along 

with the corresponding source code management. This implies that effective defect 

management and version control systems are essential for generating training datasets. 
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Accuracy of Quality Assessment: Based on internal interviews, it was found that 

software development requires a prediction accuracy of 80% or higher. This requirement 

is based on the cost and risks of corrective actions that would be taken based on the 

prediction results. If the prediction accuracy is low, incorrect modifications or rework 

may occur, potentially leading to reduced work efficiency. 

4. Evaluation Method 

4.1. Basic Method 

This study proposes a deep learning-based method for assessing source code 

quality, aiming to reduce subjectivity and reliance on developer experience. The method 

builds a classification model—a model that predicts whether a given unit of source code 

contains a defect (1) or not (0). The model is trained using small code units labeled with 

defect information, based on actual source code and related defect records. In this study, 

a function or method is used as the unit of classification. 

For vectorizing the source code, the open-source Word2Vec [12][13] is used, and 

for constructing the classification model, TensorFlow [14][15] is employed. Word2Vec is 

a distributed representation learning technique in natural language processing that uses 

neural networks to learn the semantic similarity of words (in this case, source code 

tokens) as numerical vectors. TensorFlow is an open-source machine learning library 

developed by Google. It is easy to operate in a local environment and has the advantage 

of being suitable for adoption in corporate environments, thanks to extensive 

documentation and community support. Since uploading company source code to the 

cloud for training poses security risks, such as information leakage, TensorFlow, which 

can be fully utilized in a local environment, is adopted in this study to suit internal use. 

Figure 1 shows the learning flow of the proposed source code quality prediction 

method in this study. The method consists of the following three processes: 

Source Code Acquisition Process: The source code used for training is obtained 

from version control systems such as Git. By analyzing the modification history, the 

differences before and after each commit are examined to identify functions where 

defects were fixed. The version of the code before the fix is labeled as "defect present 

(1)," and the version after the fix as "defect absent (0)." This labeling process is 

performed automatically using a tool. 

Training Data Creation Process: For the labeled functions, preprocessing steps 

such as removing blank lines and comments and tokenizing the code are applied. Then, 

distributed representations are generated using Word2Vec, resulting in each function 

being represented as a fixed-length vector suitable for input to the classification model. 
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Figure 1: Learning Flow of the Source Code Quality Prediction Method 

 

Classification Model Training Process: Using the vectorized functions and their 

corresponding labels obtained in the previous step, a binary classification model is built 

with TensorFlow. This model learns to predict the presence or absence of defects based 

on the structural features of the functions, serving as a classifier that evaluates the quality 

of new functions. 

The trained classification model outputs the likelihood of defect presence (1/0) 

when given new source code (functions) as input. By providing a clear binary output, this 

method eliminates subjective evaluation by developers and offers intuitive, easily 

understandable metrics. This method is intended to serve as an auxiliary tool for code 

review and specification verification by developers, with the final quality judgment being 

made through human review. 

4.2. Implementation and Evaluation Environment 

To verify the method proposed in the previous section, the Defect Classification 

System (DCS) was developed. The operating system, programming languages, and 

existing tools used in the development of DCS are listed in Table 1. In DCS, Word2Vec 

was first used to learn distributed representations in order to vectorize source code at the 

function level. For this training, the Noise-Contrastive Estimation (NCE) loss function 

was used, and optimization was performed using the GradientDescentOptimizer. The key 

parameter settings for training Word2Vec are shown in Table 2. The resulting vectors 

were then used to train a binary classification model (referred to as the classification 

model) that predicts the presence or absence of defects. In this training process, the cross-

entropy loss function was used, and RMSPropOptimizer was adopted as the optimization 

method. These configuration settings were determined at the outset of the study and were 

consistently applied throughout all evaluations presented in this paper. 
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Table 1: DCS Software Environment  

OS Ubuntu 16.04 LTS 

Programming Language Python 3.6.1 

OSS Machine Learning Framework TensorFlow 1.1.0 

Language Processing Tool Word2Vec 0.5.1 

 

Table 2: Configuration and Operational Parameters of the Word2Vec 

Batch Size 500 

Embedding Size 300 

Vocabulary Size 2,000 

Window Size 3 

Learning Rate 0.05 

Number of Epochs 100,000 

 

4.3. Data Collection and Composition for Training 

In machine learning, improving model performance requires large volumes of 

high-quality training data. In this study, we constructed labeled source code datasets that 

indicate the presence or absence of defects, using not only OSS but also internally 

developed code. 

To facilitate labeling, a dedicated tool was developed. This tool analyzes commit 

comments stored in version control systems and automatically extracts commits 

containing defect-related keywords such as "bug," "Bug," "Fix," "fix," "Fixed," "fixed," 

"Patch," "patch," "defect," and "Defect." It then obtains the code differences between the 

relevant revisions to identify the modified functions. The functions before the fix are 

labeled as “defect present (1),” and the functions after the fix are labeled as “defect 

absent (0),” which are then registered as training data on a function-by-function basis. 

Through this approach, we were able to systematically collect and construct 

training datasets consisting of approximately 1,000 to 10,000 function-level code 

samples. The target source code used for evaluation was primarily embedded software, 

and the programming languages analyzed included C, C++, and C#. 

5. Experiments and Evaluation 

This section verifies the effectiveness of the proposed source code quality 

classification method, specifically focusing on the classification model that functions as 

part of the DCS. The evaluation was conducted from the following perspectives: 
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• Evaluation of the performance and practicality of the classification model 

constructed using OSS data 

• Evaluation of the applicability of the model to different development 

environments and types of software 

• Performance evaluation of the classification model when applied to software with 

stable software components 

5.1. Evaluation of the Classification Model Built with OSS Data 

The evaluation was conducted using source code from OSS projects written in the 

C language. Multiple OSS projects were selected as targets, based on the ease of 

obtaining defect-related information and their active and continuously maintained 

development communities (for details of the projects, refer to Appendix). From each 

project, a labeled dataset was created by associating the source code with its 

corresponding defect-related information. The dataset was randomly split into 90% 

training data and 10% validation data, ensuring that different data were used for training 

and validation to evaluate generalization performance. 

To assess the effect of training data volume on model accuracy, the number of 

training instances was varied incrementally (from 1,000 to 10,000). As shown in Figure 

2, the accuracy improved as the data volume increased, achieving an accuracy of 80.4% 

when trained with 8,000 samples. This result exceeded the operational target defined in 

this study. However, after 8,000 samples, the accuracy plateaued, indicating diminishing 

returns from adding more data. 

 

Figure 2: Trends in Accuracy with Varying Training Data Volume 
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The classification model built from OSS code (trained with 10,000 samples) was 

applied to software developed at Factory A within the company. All of the source code 

was written in the C language. When applied to 1,000 validation samples created 

similarly to the OSS data, the model achieved an accuracy of 61.2%. This relatively low 

accuracy suggests that the model had limited generalization capability, likely due to 

structural and functional dissimilarity between the OSS and Factory A's software. 

As a comparative experiment, six developers from other departments manually 

classified a subset (120 samples) of Factory A’s validation data. The conditions for the 

manual classification were as follows: 

• Only the source code of the validation data was provided (no specification 

information) 

• All code samples were unfamiliar to the participants 

• No time limit was imposed 

• External references were prohibited 

 

Table 3 presents the classification results by each developer, and Figure 3 compares 

their average accuracy with that of the classification model. The average human accuracy 

was 53.5%, which was lower than the model’s accuracy of 61.2%. This result suggests 

that the classification model demonstrates a certain degree of effectiveness when no 

specification information is available. 

 

Table 3: Results of Manual Classification by Developers 

Participant Accuracy 
Total Response 

Time 

Development 

Experience 

Total Lines of  

Code Written (Past) 

A 55.8% 2h 51min 8 years 5KL 

B 50.0% 2h 36min 8 years 2KL 

C 48.3% 4h 14min 9 years 3KL 

D 55.0% 4h 28min 10 years 5KL 

E 57.5% 2h 06min 14 years 100KL 

F 54.2% 1h 26min 26 years 200KL 
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Figure 3: Accuracy Comparison Between Human Participants and the Classification 

Model 

 

Nevertheless, both results fell significantly short of the target operational accuracy 

(≥80%) set for internal use. This highlights the limitations of applying OSS-trained 

models to internal software. Based on this challenge, the following sections present the 

construction and accuracy evaluation of models trained on internally developed software, 

aiming for practical deployment. 

5.2. Evaluation Using Product Software 

5.2.1. Evaluation Based on Development Environments and Software Types 

In this section, the classification method was evaluated using software developed 

at Factory B within the organization. The target software was embedded software 

developed under consistent processes and quality standards within the factory. Similar to 

the evaluation using OSS, a classification model was built from source code in the 

version control system by leveraging bug tracking IDs and commit messages. Based on 

the findings from the OSS-based evaluation, it was determined that at least 8,000 training 

samples are necessary to achieve an accuracy above 80%. Therefore, only results for 

datasets with 8,000 samples or more are reported here. Evaluation results categorized by 

development environments and software characteristics are presented in Tables 4 to 6. 

Factory-Wide Classification Model: The model trained on the entire dataset 

(328,070 samples) achieved an accuracy of 64.8%, which is comparable to the result 

observed with Factory A's data. This indicates that building a generalized classification 

model across all software in the factory may be difficult. 
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Model by Programming Language: Models built separately for C, C++, and C# 

all achieved accuracy in the 60% range, suggesting that, as with the factory-wide model, 

classification based solely on programming language is not highly effective. 

Model by Product Type1: Accuracy varied significantly across products (from 

77.9% to 31.2%). For Products 1 through 3, accuracy was already near the target, and 

further improvement beyond 80% may be achievable through parameter tuning. 

However, for products such as Product 7, the accuracy was as low as 31.2%, indicating 

that product-specific models are not universally applicable across all products. 

Model by Product Lineage2: Accuracy hovered around 60%, similar to the 

results observed for language-based models. This implies that building models at the 

product lineage level is also challenging. 

 

Table 4: Accuracy by Classification Category 

No. Data Type Data Size Accuracy (%) 

(1) Overall Factory Result 

1 All Data 328,070 64.8 

(2) By Programming Language 

2 C  100,426 64.2 

3 C++ 196,208 61.6 

4 C# 31,436 60.9 

(3) By Product Type 

5 Product 1 32,856 77.9 

6 Product 2 77,526 77.4 

7 Product 3 16,968 77.2 

8 Product 4 52,256 61.2 

9 Product 5 72,834 59.0 

10 Product 6 36,618 58.3 

11 Product 7 8,334 31.2 

(4) By Product Lineage 

12 Lineage 1 6,326 60.6 

13 Lineage 2 99,018 58.0 

14 Lineage 3 3,278 56.9 

 

 
1 Variants with similar functions (e.g., performance, cost, or regional specs) are treated as the 

same product type. 

2 Classification based on software characteristics (e.g., control programs, GUI software, etc.). 
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Table 5: Accuracy by Product Type and Programming Language Combination 

No. Product Type Language Data Size Accuracy (%) 

15 Product 5 C++ 47,172 84.9 

16 Product 1 C 24,744 82.1 

17 Product 6 C++ 36,504 79.7 

18 Product 4 C 40,380 78.5 

19 Product 2 C++ 70,854 75.0 

20 Product 3 C++ 16,674 62.6 

21 Product 5 C# 23,038 52.2 

 

Table 6: Accuracy by Product Lineage and Programming Language Combination 

No. Lineage Language Data Size Accuracy (%) 

22 Lineage 2 C 93,620 78.3 

23 Lineage 3 C++ 188,446 72.1 

24 Lineage 2 C# 8,044 56.6 

25 Lineage 1 C 3,496 51.6 

26 Lineage 3 C# 23,362 50.7 

 

Model by Combined Attributes: When models were built using combinations of 

development language and either product type or product lineage, a maximum accuracy 

of 84.9% was achieved. In particular, the combination of product type and development 

language appears promising for practical use. 

These results indicate that setting an appropriate classification scope is critical to 

constructing practical classification models. It was observed that rather than using simple 

criteria such as programming language or product lineage, classification designs that take 

product-specific characteristics into account have a significant impact on accuracy. 

Nonetheless, ensuring sufficient quantity and quality of training data remains a 

challenge. Compared to OSS-based data, internally developed software often exhibits 

structural, and quality biases accumulated over years of product evolution, making it 

more difficult to extract consistent features. Based on the insights obtained in this section, 

the next section focuses on software from Factory C, where software structures are more 

stable, to further evaluate the applicability of the proposed method. 

5.2.2. Evaluation in the Case of Stable Software Structures 

In contrast to the previous section, the applicability of the classification method 

was evaluated using software developed at Factory C within the organization. The 

software developed at Factory C is embedded software responsible for equipment control. 

A key characteristic of this software is its product variety expansion, which is achieved 
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by standardizing the basic structure and recombining software components. All source 

code is written in the C programming language, and component composition is varied 

based on performance, scale, and operating region. This software matches the 

classification conditions of "programming language" and "product type" suggested as 

effective in the previous section, making it a suitable target for building the classification 

model. 

The construction method of the classification model and the dataset preparation 

process followed the same approach used for Factory B. However, in this evaluation, 

more detailed analysis was conducted by introducing commonly used performance 

metrics—such as Precision, Recall, F1 score, and Area Under the Curve (AUC)—in 

addition to Accuracy. This was deemed necessary to thoroughly analyze the risk of 

overfitting and the balance of accuracy in the classification model for Factory C 's 

software. 

Table 7 shows the transition of each performance metric depending on the amount 

of training data. When the number of training samples exceeded 10,000, improvements 

were observed across all metrics in a well-balanced manner. In particular, the accuracy 

reached 0.81 and the F1 score reached 0.80, both indicating results at a level feasible for 

actual operation. However, when the number of training samples increased to 12,000, 

some metrics (such as Precision) showed a decline. 

 Figure 4 presents the ROC curves for models trained with 4,000 and 10,000 

samples. The ROC curve plots the False Positive Rate (FPR) on the x-axis and the True 

Positive Rate (TPR) on the y-axis, and the area under the curve (AUC score) is used to 

evaluate classification performance. For the model trained with 4,000 samples, the AUC 

score remained at 0.61, with the TPR increasing proportionally with the FPR—reaching a 

TPR of 0.8 only when the FPR reached 0.6. In contrast, the model trained with 10,000 

samples achieved an AUC score of 0.81 and reached a TPR of 0.8 already at an FPR of 

0.2, indicating a high true positive rate with fewer false positives. These results suggest 

that the model trained with 10,000 samples provides more balanced and higher 

classification performance. 

 

Table 7: Summary of Performance Metrics 

Metric / Training Data Size 4,000 6,000 8,000 10,000 12,000 

Accuracy score 0.63 0.73 0.75 0.81 0.90 

Precision score 0.62 0.75 0.79 0.85 0.75 

Recall score 0.61 0.70 0.80 0.77 0.92 

F-measure score 0.61 0.72 0.80 0.80 0.83 

AUC score 0.61 0.73 0.76 0.81 0.81 
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Figure 4: ROC curves 

 

Figure 5 presents a graph showing the transition of accuracy and error with 

respect to the number of training epochs. The x-axis represents the number of training 

epochs, while the y-axis shows either the accuracy or error. The model's accuracy on the 

training data converged to around 0.8 with increasing training epochs, while the accuracy 

on validation data stagnated around 0.5. At this point, the generalization error increased, 

indicating overfitting. On the other hand, when using 10,000 training samples, both 

accuracy and error demonstrated favorable trends. This suggests that securing a sufficient 

amount of training data is essential for improving the practical utility of the classification 

model. 
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Figure 5: Trends in Accuracy and Error with Training Epochs 

 

In the evaluation conducted at Factory B, performance metrics were not used, as 

the primary objective was to verify the applicability of the classification model across 

different contexts. In this section, however, such metrics are introduced as part of an 

enhanced evaluation methodology, developed based on insights from the previous section 

and reflecting the progression of this study. 

6. Discussion 

This study aimed to develop a source code classification model that can operate 

securely within an organization’s local environment, without relying on external 

resources. The model was evaluated using datasets from both OSS and internally 

developed software in three factories. Through these evaluations, several insights were 

gained regarding the key conditions necessary to enhance classification performance in 

practical settings. 

In the model trained on OSS data, increasing the training dataset size led to 

improved performance, with accuracy reaching 82.1% when 10,000 samples were used. 
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However, when this model was applied to source code from Factory A, the accuracy 

dropped to 61.2%. This result indicates that differences in software structure and 

development processes between the training and target domains can significantly impact 

the model’s generalization capability. These findings underscore the importance of 

domain alignment as a critical factor in ensuring classification effectiveness. 

Evaluations using source code from internal factories revealed further insights. In 

Factory B, training the model with only a single classification condition yielded limited 

accuracy. In contrast, combining product type and programming language as 

classification criteria resulted in a substantial improvement, achieving 84.9% accuracy. 

This suggests that a uniform classification approach may be insufficient, and that 

tailoring the model to the specific characteristics of the target software is more effective 

for practical deployment. 

The evaluation at Factory C partially corroborated the findings from Factory B. 

The software at Factory C features a standardized and modularized structure and is 

written exclusively in C, aligning well with the effective classification conditions 

identified earlier. When trained on more than 10,000 samples, the model demonstrated 

consistently high performance across multiple metrics: Accuracy (0.81), F1 Score (0.80), 

and AUC (0.81). In contrast, training with only 4,000 samples led to high performance on 

the training set but poor generalization to the validation set, indicating a tendency toward 

overfitting. 

Based on these results, we conclude that constructing a practical classification 

model for internal software requires: (1) designing classification schemes that 

appropriately narrow the target scope, and (2) securing a sufficient volume of labeled 

training data—at least 10,000 instances. Furthermore, classification model performance 

using multiple metrics—such as Precision, Recall, F1 Score, and AUC alongside 

Accuracy—provides a more comprehensive and robust assessment. 

Despite these promising results, the study faces the following threats to validity: 

Internal Validity: The classification models constructed in this study require more than 

10,000 labeled source code samples for training. Labels were automatically assigned 

using commit comments and bug tracking IDs; however, concerns remain regarding the 

completeness of defect-related information, the accuracy of mapping these labels to the 

corresponding code, and the long-term feasibility of constructing large-scale, high-quality 

labeled datasets. 

External Validity: This study focused on specific factories and products within a single 

company. Therefore, it is unclear whether the findings can be directly applied to other 

companies or environments with different development styles. Differences in 
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development structures, coding conventions, and version control practices may influence 

model performance. 

Construct Validity: The dataset used was limited to OSS and a subset of internal 

projects, which may not fully reflect the variability in project scale or quality. 

Furthermore, the performance evaluation employed only limited cross-validation and 

statistical significance testing, requiring cautious interpretation when generalizing the 

results. 

To enhance the reproducibility and generalizability of classification models, 

future work should refine labeling methods, consider domain alignment in classification 

schemes, and validate models across various domains. 

7. Conclusion and Future Work 

This study aimed to construct a source code classification model that can operate 

locally within organizations under security constraints. To this end, we developed and 

evaluated classification models using both OSS and internally developed software. 

Experimental results showed that the classification model trained on OSS data 

achieved a maximum accuracy of 82%, demonstrating its potential for practical 

application. In contrast, models trained on internal datasets exhibited substantial variation 

in performance depending on factors such as factory, development target, software 

structure, and development style. Nevertheless, by narrowing the scope of the target 

systems and ensuring a sufficient volume of training data (approximately 10,000 samples 

or more), it was possible to build classification models that exceeded the target accuracy 

of 80% in certain cases. 

Moving forward, we plan to improve development processes—such as 

standardizing defect-fix records—to facilitate the collection of high-quality training data. 

At the same time, we will explore the adoption of advanced AI techniques capable of 

delivering high accuracy with smaller datasets. Additionally, through continuous 

feedback from field applications, we aim to retrain and refine the classification models, 

ultimately integrating them into code review support and quality assurance activities. 
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Appendix. List of OSS Repositories Used for Classification Model 

Construction 

No. Repository URL 

1 https://github.com/php/php-src.git 

2 https://github.com/torvalds/linux.git 

3 https://github.com/FFmpeg/FFmpeg.git 

4 https://github.com/grpc/grpc.git 

5 https://github.com/antirez/redis.git 

6 https://github.com/git/git.git 

7 https://github.com/RedisLabsModules/RediSearch.git 

8 https://github.com/shadowsocks/shadowsocks-libev.git 

9 https://github.com/firehol/netdata.git 

10 https://github.com/mpc-hc/mpc-hc.git 

11 https://github.com/jp9000/obs-studio.git 

12 https://github.com/DrKLO/Telegram.git 

13 https://github.com/ggreer/the_silver_searcher.git 

14 https://github.com/pjreddie/darknet.git 

15 https://github.com/pmq20/ruby-compiler.git 

16 https://github.com/Bilibili/ijkplayer.git 

17 https://github.com/happyfish100/libfastcommon.git 

18 https://github.com/Tencent/wcdb.git 

19 https://github.com/wg/wrk.git 

20 https://github.com/tmux/tmux.git 

 


