Journal of Software Engineering Practice, 2019 3(3)

Comparison of modern techniques for analyzing NFRs in agile: A systematic literature review

Siraj Un Muneer Dr. Muhammad Nadeem Dr. Bakhtiar Kasi
CS Dept. CE Dept. SE Dept.
BUITEMS BUITEMS BUITEMS
Author Note

This is a self-financed research.
Author may be corresponded to sighage@gmail.com

Abstract

The need for focusing security requirements for software projects is of great significance.
There are numerous studies conducted on gathering and eliciting security requirements in
requirements management process. The objective for this systematic literature review is to make
a comparison of some modern requirements management techniques with classic techniques for
managing Non-Functional Requirements (NFRs) in agile Software Methods. We identified 25
research articles and pointed out some weaknesses found in classic requirements management
techniques used with agile Methodologies. We examined the weaknesses posed by some
requirements management techniques and mapped them with the strengths offered by modern ones.
This research contributes in identifying solutions discussed in the literature to overcome the
weaknesses found in classic requirements management techniques.

Keywords: agile methodologies, agile, Scrum, NRFs, Software security, software
engineering, software architecture, security requirements, SLR

INTRODUCTION

Agile methods for developing software is a particularly new idea, this approach gained
attention in past years. Majority of the organizations are adopting agile methodologies. So, this
tendency is due the unending necessity of producing state-of-the-art solutions, rapid development,
and software with good Return on Investment (ROI). It is preconceived in agile Methods that
changing requirements are certain, and thus the development cycle must adapt to this fact.
Furthermore, software development teams are required to deliver product to the customer quickly
with fewer concerns on extensive planning and documentation (Knauss, 2017).

Some of the characteristics mentioned below have been especially useful in projects using
agile methodologies: short deadlines, smaller teams, consistent change in requirements, systems
incorporating new technologies. Adopting agile successfully leads to achievement of higher
quality software at cheaper rates and enhance developer's morale. (Sachdeva, 2017).

Nevertheless, most agile methodologies have been a light and lucid process, the adoption
still often is difficult, which is due the reason that they are not clear themselves, so it is challenging
to introduce agile methodologies altering the culture of a company. Special challenges and
fundamental organizational changes arise with agile adoption which are necessary for successful
outcome (Rindell, 2016) (Camacho, 582-589).

FUNDAMENTALS OF AGILE METHODOLOGIES
Since the dawn of software development, for any specific project development
methodologies have been the main focus of life cycle approaches. Since1940, in approaches like
structured programming, aspect or object-oriented programming or more recently XP (extreme



Journal of Software Engineering Practice, 2019 3(3)

programming) there have been noticeable changes on software development paradigm. With each
evolution, a new change is introduced and new ways of thinking and analyzing the problem which
brings about strength in development cycles. To efficiently use methodologies, the formulated
defined process is important to be followed. In conventional software engineering methodologies,
there were debilities and shortcomings and agile methods were developed as an effort for
improvement. Decades of hard work have resulted in improved agile methodologies which have
resulted in improvements to projects; however, they have not proven to be best for all projects or
situations. In context of industry, people’s work habits have been considerably changed by
introducing agile methodologies; these methodologies impart an opposite approach in contrast
with classical software development approaches. Many proposed agile methodologies have been
in use in industry until today; e.g. XP (Extreme Programming), ASD (Adaptive Software
Development), Scrum, and others.

LITERATURE SURVEY

Just-in-Time (JIT) approaches are one of the very famous techniques for managing NFRs
in agile projects. A knowledge management framework is proposed in the literature to allow JIT
RE to properly meet non-functional requirements on spot. (Knauss, 2017). Topnotch
methodologies for example XP (Extreme Programming) aid in developing systems that a system
with all functional requirements. However, non-functional requirements are usually missed-out or
reminded later and made part of the project quite late in the development (Sachdeva, 2017).
Projects with gigantic infrastructure for example cloud and big data NFRs are quite crucial, for
which AC (Acceptance Criteria) has to be defined visibly and security and performance in the
DoD (Definition of Done) for all related user stories and releases is especially noteworthy.
(Sachdeva, 2017). In another study, VAHTI security instructions are proposed for developing a
secure ID management system and all the management processes (Rindell, 2016). A study has
empirically analyzed factors such as cost, priority and pressure of time were reinforced since the
traditional waterfall development models were used (Camacho, 582-589). Technical issues may
be resolved by adopting development philosophies like DevOps integration (Camacho, 582-589).
Yet another study has analyzed Microsoft Software Development Lifecycle for agile (Ch'oliz,
2015)They have shown a successful synchronization among the independent security team and
agile software engineering teams (Ch'oliz, 2015).

Traceability Process Model (TPM) has been introduced to trace the NFRs (Non-Functional
Requirements) such as security and performance (Arbain, 228-233). Big up-front design (BUFD)
is yet another technique which is needed for security related engineering (Raschke, 2014 ). On the
other hand, to facilitate agile security evaluation process to a high degree in agile security
evaluation method for the common criteria standard has been introduced in another study.
(Raschke, 2014 ). A similar study introduced agility into a safety-critical development process
(Stephenson, 2006). A Non-Functional Requirements modeling for agile Processes (NORMAP)
has been proposed in a study that identifies and links agile Loose cases with agile Use Cases and
agile Choose Cases (Farid, 2012 ). Extensive customer involvement and developer's security
awareness and expertise is focused in a study to improve the development process for security
(Bartsch, 2011). Security principles integrated in development phases is also proposed which can
result in a good analysis and implementation of security features in agile processes
(Azham, 2011). Another integration of a lightweight agile approaches to security risk management
in the agile development life cycle is discussed (Franqueira, 2011).



Journal of Software Engineering Practice, 2019 3(3)

Cross-functional prioritization of processes can be achieved using a replacement of traditional
Market Requirements Documents (MRDs) with Fast Track concept to attain agility (Hodgkins,
2007). A selection framework for business has been introduced after comparing several traditional
development processes with agile methodologies (Chen, 2007). The aforementioned selection
framework proposes to successfully incorporate security requirements and volatile system
requirements in agile methodologies.

A position paper has tried to shed light on the way agile practitioners include NFRs such
as security requirements in agile projects and came up with a conclusion of the study having some
implications for practice and research (Terpstra, 2017). A focus with a view of captured data on
investigation of quality requirements’ influence on architectural decisions is demonstrated in a
study (Kassab, 2017). CEP (Capture, Elicit and Prioritize) methodology is proposed that baselines
NORMAP and prioritizes security requirements (Maiti, 2017). A profiling methodology has been
proposed in a study that takes personas as a tool to collect data for requirements. The study realizes
the concept of anonymized and crowd-sourced personas (Alvertis, 2016).

CEPP (Capturing, Eliciting, Predicting and Prioritizing), a focused study to effectively
gather metadata on NFRs from requirements documents (Maiti, 2017). Also, historical trending is
used for predicting overlooked additional NFRs in early stages of agile processes.

The use of security assurances cases to maintain a generalized view of security claims as
features are being developed. A study that enables the incremental development of security
features as well as ensuring security requirements of features are fulfilled (Ben Othmane, 2014).
Domain specific modeling languages (DSMLs) are introduced for the domain of security
engineering (Eichler, 2012). The languages and implementation requirements have been sketched
to report pitfalls and remaining issues with regard to development.

A lightweight quality evaluation method which reflects quality attributes to enhance Non-
functional features of an agile approach (Um, 2011). rCOS is adopted in agile software
development through convincing examples for improving software trustworthiness (Farroha,
2011). SQUARE (Security Quality Requirements Engineering) is used as an example
methodology to consider quality issues like security in the early phases of software development
Lifecycle (Zuo, 2010).

RESEARCH METHODOLOGY
An SLR (Systematic Literature Review) helps in discovery and analysis of extensive research
available with the pertinent domain of a particular study. The existing research is empirically
evaluated and well established within the research community in accordance with predefined
criteria. After working on the review results provide scientific evidence by categorizing and
classifying relevant studies. The main steps described below were performed:

A. Formulating research questions

The primary focused was on identification of problems in analyzing software security
requirements in agile methodologies. Following research questions have been formulated to
accomplish the review:

RQ1: What are the weaknesses of requirements gathering techniques used in agile
methodologies?

RQ2: How do modern techniques for analyzing NFRs overcome the weaknesses identified in
RQ1?



Journal of Software Engineering Practice, 2019 3(3)

The first question deals with discovering weaknesses of requirement gathering techniques used in
agile methodologies.

The second question emphasizes on exploring modern requirements gathering techniques to
overcome the weaknesses identified.

B. Search strategy

We considered the most popular scientific research library, IEEE Xplore. The intent was to
review the most recent publications from 2008 to 2017, approaching specialized journals and
conferences.

— : 3 &)
+ [dentification of research questions.
* Define search strategy.
SLR Planning ‘, - X %
¢tept) | ¢ Define Data extraction criteria. y
T B
* Define Selection Process.
Data Section| ¢ 1Pata extraction.
& Evaluation ata analucie « avalian
cep2y | ¢ Data analysis and evaluation. )
~
* Research findings and discussion.
Data e (O :
PO Conclusion.
(Step 3) J

Figure 1
Systematic Literature Review Process

Search structure based on keywords "software security requirements in agile". The search string
was looked up in three parts of a full text (body of the paper), keywords, and abstract. Following
procedure was used to identify the most relevant studies for this SLR and taking a fast view of the
rest of the sections in a paper:

o Choice of the keyword for research

o Look up in the digital library, based upon Inclusion/Exclusion criteria trying with
keywords.

J Analyzing every single paper based on its title & abstract.

o Collecting papers fulfilling search criteria.

J Rereading introductions & conclusions.

C. Search based on Title
Firstly, duplicates and irrelevant papers are manually excluded based on titles. After the first
stage, only 33 papers remained for further refinement in the next phase.



Journal of Software Engineering Practice, 2019 3(3)

D. Search based on Abstract

Secondly, analysis of information in abstracts is performed and the papers are categorized
along with approach for the analysis of agile methodologies. Research approaches include
experiments, case studies, surveys, and reviews. At this stage, the quality of empirical data is

not judged. After this stage, 28 papers remained in the list.

RESULTS FROM THE REVIEW

A. Exclusion Criteria

Table 1 includes selected number of papers form IEEE database. We searched for keywords
"Software Security Requirements in agile”, finding 79 papers in the most famous research library.
These papers were reviewed at the level of “Title”, reducing the amount to 33. After that, we
reviewed the “Abstract”, reducing the amount to 28. Finally, looking at the overall view of

complete papers, reducing them to 25, which are pertinent for our research.

Excluded Included
Initial Search Results 79
Duplicate Studies 7 71
Exclusion based on title 38 33
Exclusion based on Abstract 5 28
Exclusion after viewing full paper 3 25

Table 1

Selected Papers

B. Weaknesses of Requirements Management Techniques

Table 2 shows some weaknesses of requirement management techniques used in agile methods,

discussed in literature.

Techniques

Weaknesses

Just-in-time (JIT) (Knauss, 2017)

Big up-front design (BUFD) (Raschke, 2014 )
Rapid feedback (Stephenson, 2006)
RE in scrum (Azham, 2011)

Top-down approach based on plando-checkact
cycle (Franqueira, 2011)

Upfront, fix planning which drives remaining
risk management activities (Franqueira, 2011)
Documentation-centric approach which relies
on documented knowledge (Franqueira, 2011)

NFRs not met on spot

Not all aspects of requirements are
covered

It can take up to months

Skips most of NFRs

Ignores mostly security requirements
Focuses only FRs

Ignores the security risk management
activity

Time consuming

Human resource requirement
Extensive feedback required

No proper prioritization of
requirements




Journal of Software Engineering Practice, 2019 3(3)

Techniques Weaknesses
Assumes complete and correct information e Uncertainty of knowledge
and consensus about criteria used (Franqueira,
2011)
Table 2

C. Modern Techniques for Requirements Management

Requirements management is the process of finding, discovering, elaborating, and
acquiring requirements for computer software systems. It is generally understood that
requirements are managed rather than just captured or collected. Some modern techniques and
agile philosophies discussed in the literature are mentioned in Table 3. These techniques were
proposed to overcome the weaknesses discussed earlier.

Techniques Strengths

SecVolution (Knauss, 2017) e Detects as many know suspicious
requirements an submit this much
smaller list of requirements to the rare
expert for final resolution

e In order to extract knowledge from
human-made natural language
requirements, NLP techniques

e Uses an ontology to represent the

knowledge
Knowledge Management Framework e An ontology plays a central role of
(Knauss, 2017) managing knowledge
e External published warnings (of
vulnerabilities)

e insights of security experts are
encoded in the ontology

Secure Identity Management System based on e Faster reaction to changes in the
VAHTI (Rindell, 2016) requirements and directness of the
client feedback

e Direct channels to the client were
viewed to be very valuable during the

implementation
Software Security Testing Process (Ch'oliz, e Enforced the Security Team to apply a
2015) new methodology

e Achieving the desired synchronization
of the Security Team with the sprints
of the SE Team

e Detection of security findings occurs
earlier in the lifecycle instead of at the
end of the project timeline




Journal of Software Engineering Practice, 2019 3(3)

Techniques

Strengths

Traceability Process Model (TPM) (Arbain,
228-233)

Capture Elicit Prioritize (Maiti, 2017)

Crowdsourced and anonymized Personas
(Alvertis, 2016)

Capturing, Eliciting, Predicting and
Prioritizing (CEPP) (Maiti, 2017)

Domain Specific Modeling Languages
(DSMLs) (Eichler, 2012)

Security Quality Requirements Engineering
(SQUARE) (Zuo, 2010)

Combines both agile and FR and NFR
model traceability metamodel
traceability

Helps the development team to

trace NFRs such as Security and
Performance in the system

Retrieves Non-Functional
Requirements from requirements
documents and diagram/images
contained in the docs

Document requirements and drive the
development process through real user
profiles of connected services like
Facebook, Twitter, Instagram etc.
Prioritization of NFRs

Improve upon prior studies of NFRs in
order to provide effective techniques
to prioritize and predict NFRs
Supports the development and
application of adequate DSMLs, agile
approaches and frameworks to provide
appropriate tooling are needed

Sketch the language and
implementation requirements for our
modeling tools, design and
implementation consideration

Exports pitfalls and issues pertaining
to development of tools for modeling.
Emphasis on implementation in initial
phases of methodology.

In the business study phase of DSDM,
all the steps of SQUARE fit.

Table 3

D. Modern Techniques as solution

We have mapped some identified weaknesses of the classic requirements management
techniques with the strengths exhibited by modern techniques in Table 4. Following table shows
that the weaknesses posed by classic techniques may be avoided by adapting modern techniques.

Weaknesses of Classic Techniques Solutions by Modern Techniques

All aspects of requirements are not covered

Detects as many know suspicious
SecVolution detects as suspicious
requirements




Journal of Software Engineering Practice, 2019 3(3)

Weaknesses of Classic Techniques Solutions by Modern Techniques
e Natural-language processing
techniques
¢ Ontology to represent the knowledge
Time consuming and extensive feedback e Crowdsourced and anonymized
required Personas technique offers automated

collection of requirements using social
media profiles
e Very fast requirements collection
method
NFRs are ignored e Traceability Process Model (TPM)
helps trace NFRs such as Security and
Performance in the design

Extensive Human resource e Retrieves NFRs from requirements

involvement documents or images and diagrams
using OCR

Uncertainty of knowledge e KM (Knowledge Management)

Framework, an ontology acts as a
central role of knowledge
management

e Externally published threats or
vulnerabilities” warnings

e security experts’ insights encoded in
ontology

No proper prioritization of NFRs e CEPP provides prioritization of NFRs

e improves effectiveness of techniques
for prioritization and prediction of
NFRs

Table 4

CONCLUSION

This paper presented a comprehensive comparison on some state-of-the-art requirements
management methodologies. Some of the methodologies discussed in the literature were being
used with agile methodologies for years. The weaknesses of such methodologies were also
mentioned in the literature and this research has incorporated the discussed weaknesses.

Most of the researchers have proposed many new methodologies for requirements
management and they have discussed their strengths. Mostly, proposed methodologies have been
tested on projects and applied to some scenarios to test their efficacy. Some of them have no
evidence of their effectiveness.

We have mapped the weaknesses with the strengths and identified that modern techniques
can serve as a solution in overcoming the discussed weaknesses. The proposed requirements
management techniques have a big potential and can result in effective quality requirement
management. Security requirements are usually skipped or omitted due to many factors, but



Journal of Software Engineering Practice, 2019 3(3)

methodologies discussed in this research takes quality requirements in perspective and makes it
significant to be incorporated at design time.

ACKNOWLEDGEMENT
Special thanks to Dr. Muhammad Nadeem for the inspiration and undivided attention
which helped a lot in the completion of this study. We are especially thankful to one of the authors
of an article which has been cited, for providing us with the full version of the paper which was
yet to be published.



Journal of Software Engineering Practice, 2019 3(3)

REFERENCES
Alvertis, I. a. (2016). Using crowdsourced and anonymized Personas in the requirements

elicitation and software development phases of software engineering. 2016 11th
International Conference on Availability, Reliability and Security (ARES), 851--856.

Arbain, A. F. (228-233). agile non functional requiremnents (NFR) traceability metamodel. 8th
Malaysian Software Engineering Conference (MySEC), 2014, 2014.

Azham, Z. a. (2011). Security backlog in Scrum security practices. 2011 5th Malaysian
Conference in Software Engineering (MySEC), 414-417.

Bartsch, S. (2011). Practitioners' perspectives on security in agile development. Sixth
International Conference on Availability, Reliability and Security (ARES), 2011, 479-484.

Ben Othmane, L. a. (2014). Using assurance cases to develop iteratively security features using
scrum. 2014 Ninth International Conference on Availability, Reliability and Security
(ARES), 490--497.

Camacho, C. R. (582-589). agile team members perceptions on non-functional testing:
influencing factors from an empirical study. //¢h International Conference on
Availability, Reliability and Security (ARES), 2016, IEEE, 2016.

Chen, J. Q. (2007). Light-weight development method: a case study. 2007 International
Conference on Service Systems and Service Management, 1-6.

Ch'oliz, J. a. (2015). Independent security testing on agile software development: a case study in
a software company. /0th International Conference on Availability, Reliability and
Security (ARES), 2015, 522-531.

Eichler, J. a. (2012). Supporting security engineering at design time with adequate tooling. 2012
IEEE 15th International Conference on Computational Science and Engineering (CSE),

194--201.

10



Journal of Software Engineering Practice, 2019 3(3)

Farid, W. M. (2012 ). The Normap methodology: Lightweight engineering of non-functional
requirements for agile processes. 2012 19th Asia-Pacific Software Engineering
Conference (APSEC), 322-325.

Farroha, D. L. (2011). agile development for system of systems: Cyber security integration into
information repositories architecture. Systems Conference (SysCon), 2011 IEEE
International, 182--188.

Franqueira, V. N. (2011). Towards agile security risk management in RE and beyond. 2011 First
International Workshop on Empirical Requirements Engineering (EmpiRE), 33-36.

Hodgkins, P. a. (2007). agile program management: Lessons learned from the verisign managed
security services team. agile Conference (AGILE), 2007, 194-199.

Kassab, M. (2017). A Contemporary View on Software Quality Requirements in agile and
Software Architecture Practices. 2017 I[EEE 25th International Requirements
Engineering Conference Workshops (REW), 260--267.

Kitchenham, B. a. (2009). Systematic literature reviews in software engineering--a systematic
literature review. Information and software technology, 7-15.

Knauss, E. a. (2017). Quality Requirements in agile as a Knowledge Management Problem:
More than Just-in-Time.

Maiti, R. R. (2017). Capturing, eliciting, and prioritizing (CEP) NFRs in agile software
engineering. SoutheastCon, 2017, 1-7.

Raschke, W. a. (2014 ). Supporting evolving security models for an agile security evaluation.
2014 IEEE Ist Workshop on Evolving Security and Privacy Requirements Engineering

(ESPRE), 31-36.

11



Journal of Software Engineering Practice, 2019 3(3)

Richard Rabin Maiti, A. K. (2018). agile Software Engineering & The Future of Non-Functional
Requirements. Journal of Software Engineering Practice, 1-8.

Rindell, K. a. (2016). Case study of security development in an agile environment: building
identity management for a government agency. /EEE, 556-563.

Sachdeva, V. a. (2017). Handling non-functional requirements for big data and IOT projects in
Scrum. 7th International Conference on Cloud Computing, Data Science & Engineering-
Confluence, 2017, 216-221.

Stephenson, Z. a. (2006). Health modelling for agility in safety-critical systems development.
IET.

Terpstra, E. a. (2017). agile Practitioners’ Understanding of Security Requirements: Insights from
a Grounded Theory Analysis. 2017 IEEE 25th International Requirements Engineering
Conference Workshops (REW), 439-442.

Um, T. a. (2011). A quality attributes evaluation method for an agile approach. 2011 First
ACIS/JNU International Conference onComputers, Networks, Systems and Industrial
Engineering (CNSI), 460--461.

Zuo, A. a. (2010). Research of agile software development based on formal methods. 2010
International Conference on Multimedia Information Networking and Security (MINES),

762--766.

12



